
Manage Telecommunication equipment using web
services

Class
T3

EIA-FR / KEYMILE Kiki Thierry, Schneider David 10.07.09

Diploma Project

Manage Telecommunication
equipment using Web Services

Acronym: TELECOM-WS
Number: D09T02

Date: 25.05.09 – 10.07.09

Professeurs:
Philippe Joye
François Buntschu

Students:
Thierry Kiki
David Schneider

Mandatory:
Daniel Gachet

Expert:
Nicolas Mayencourt

TELECOM-WS

Table of contents i
1 Introduction 6

1.1 Definitions 7

1.2 Project 8
1.2.1 Introduction 8
1.2.2 Description of project 8
1.2.3 Objectives 11
1.2.4 Distribution of Tasks 12

1.3 What is MileGate? 13
1.3.1 Flexibility in interfaces 13

1.4 General structure of the MileGate 14
1.4.1 Structure of the Object Model 14

1.5 Constraints for MileGate 15
1.5.1 Processor 15
1.5.2 Memory 15

1.6 Communication with the MileGate 16
1.6.1 Client-Server system 16
1.6.2 Format of the requests and responses 16

2 Introduction into Web Services 18

2.1 SOA (Service-Oriented Architecture) 19
2.1.1 Architecture 19
2.1.2 Basic characteristics of a SOA 21

2.2 Web Service Architecture 22
2.2.1 Definition 22
2.2.2 Basic Concept 22
2.2.3 Standardization 23

3 Traditional web service 24

3.1 Embedded http server 25
3.1.1 Selective criteria of servers 25
3.1.2 Required field 26
3.1.3 List of few embedded servers 28
3.1.4 Comparative table of few servers 30
3.1.5 Classification of compared servers 32
3.1.6 Few suggestions of server web generating content dynamically 32

TELECOM-WS Manage Telecommunication
equipment using Web Services

iii

 Table of contents

3.2 HTML generation service 34
3.2.1 Background 34
3.2.2 Business functions 34
3.2.3 Feasibility study 35
3.2.4 Recommendation for Implementation 36
3.2.5 Conclusion 40

4 W3C Web Service Description 41

4.1 Introduction 42

4.2 Structure of the description 43

4.3 SOAP Message 48

5 Web Service Concepts 50

5.1 Addressing 51
5.1.1 WS-Addressing 51
5.1.2 WS-Management 52
5.1.3 WS-Transfer 53

5.2 Resource 54
5.2.1 WS-Discovery 54
5.2.2 WS-Resource 54
5.2.3 WS-Notification 56

5.3 Management 59
5.3.1 WS-Distributed Management 59

6 Web Service Tools 64

6.1 Clients Tools 65
6.1.1 Interoperability between web services and SOAP protocol 65
6.1.2 Web Services Interoperability Organization (WS►I) 68
6.1.3 Presentation of a few frameworks 71
6.1.4 Framework evaluation 77
6.1.5 Tests tools 85

7 Realization of the Prototype 88

7.1 Flow of information 89
7.1.1 SFD to WSDL 89
7.1.2 WSDL to Code & SOAP 90
7.1.3 HTTP Server 90
7.1.4 SOAP to KOAP 91
7.1.5 KOAP to C++ 91

7.2 WSDL File generation 92

8 Tests 93

8.1 Tests Definition 94
8.1.1 Verification of the Web Service 94
8.1.2 Framework verification 97

TELECOM-WS Manage Telecommunication
 equipment using Web Services

iv

 Table of contents

8.2 Validation of performed tests 98
8.2.1 Validation of files / messages 98
8.2.2 Testing the response of the MileGate 98
8.2.3 Validation of framework 104

9 Conclusion 106

10 Thanks 108

11 Annexes 109

11.1 References 110
11.1.1 Keymile 110
11.1.2 Service Oriented Architecture / Web Service Architecture 110
11.1.3 Webservice description / concepts 110
11.1.4 Embedded Webserver 112
11.1.5 Frameworks 112

11.2 Figures 114

11.3 Complementary Information 117

TELECOM-WS Manage Telecommunication
 equipment using Web Services

v

1 Introduction

Abstract

This first chapter introduces you into the Bachelor Project of Thierry Kiki and David
Schneider. Necessary definitions and explications for the understanding of the re-
port are provided here.

TELECOM-WS Manage Telecommunication
equipment using Web Services

page 6 of 117

1.1 Definitions

MileGate
MO: Managed Object
MOM: Managed Object Model
moType: Managed Object Type
MF: Management Function
ADF: AccesPoint (MO) – definition file
SFD: Proprietary structure file of MileGate
MCST: MileGate Configuration Software Tool
KOAP: KEYMILE Object Access Protocol

Web Service
XML: Extensible Markup Language (W3C)
SOAP: Simple Object Access Protocol (W3C)
Web Services: W3C recommendation
GUI: Graphical User Interface

Others
ECLI: Embedded Comand Line Interface
HMI: Human-Machine Interface
MMI: Machine-Machine Interface

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 7 of 117

1.2 Project

This section describes the project and introduces the equipment. We defined
the objectives we planed to reach at the initiation phase of the project. The
distribution of tasks between the participators of the project will also be
defined here.

1.2.1 Introduction

The company KEYMILE wishes a utility to manage its next generation telecom-
munication equipment with a system using web services. Actually, the man-
agement of the object model is performed either over an embedded command
line (ECLI), syslog, SNMP or with the exchange of proprietary XML messages
(KM-KOAP). The aim of this project is to find standardized solutions using web
services (MMI) or to offer access via a web browser (HMI).

Illustration 1: MILEGATE management interfaces

1.2.2 Description of project

As this project needs to be adapted to the existing system, we need to respect
a few constraints.
In the following image, the relations between the KEYMILE file describing the
internal object model (SFD, XML) and the AccessPoint Definition File ADF (pro-
prietary, XML).

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 8 of 117

1.2.2.1 Actual management system

At the moment, the management system uses ADF which is a collection of
SFD and describes one single unit in the MileGate. The core unit and access
point of the MileGate is in slot 11.

Illustration 2: Existing system

If we represent the actual communication more in detail, we see how the ex-
isting management utilities access the MileGate Object Model.

Illustration 3: Existing access methods

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 9 of 117

1.2.2.2 Work to perform

We have two new approaches for accessing the MileGate Object Model. The
tasks to perform are represented in red.

1.2.2.2.1 Machine-Machine Interface (MMI)

The Web Service Description (WSDL file) which would finally be created will be
the input for the client framework. The framework will generate code (for ex-
ample Java, C, C++, Perl, Pyton, PHP, ..) automatically according to the con-
straints defined in the web service description.
The messages of the type SOAP (transported over HTTP) are treated within
the embedded HTTP server and afterward transformed from SOAP-XML into
the proprietary XML format which is the only interface of the MileGate's em-
bedded system.

Illustration 4: Approach with web service

1.2.2.2.2 Human-Machine Interface (HMI)

To be accessible by humans, the MileGate should provide HTML files generated
at runtime. Therefore, we connect the HTTP Server not with the Client frame-
work but with a web browser.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 10 of 117

4 6

2
5

3

5

Illustration 5: Approach with generation of
HTML files

For both approaches the MileGate Object Model manages the call of the C++
routines from the proprietary XML messages. In addition, it communicates
with the hardware and affects storage/request of data.

1.2.3 Objectives

The sections contains the definition of the objectives. The numbers refer to the
section “1.2.2.2 Work to perform”.

1.2.3.1 Side issue

Find a good way to generate on the fly HTML pages within the
MilGate which providing a web browser access.
Survey and evaluate different embedded HTTP servers running
on Linux and/or VxWorks for the MilGate.

1.2.3.2 Main issue

Survey and evaluate different client frameworks and describe
their compatibilities with the Web Services.
Describe the flow of information from the KEYMILE files which
describes the internal structure through the embedded
HTTP Server to the MileGate
Define the web service and the necessary transformation.
Implement a prototype using the web service (MMI).

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 11 of 117

2

3

4

5

1

12

6

1.2.4 Distribution of Tasks

A strict division of the responsibilities was demanded. Even though the project
was difficult to subdivide at the initiation phase, we split the tasks after some
discussions as followed:

Thierry Kiki has to:
• Survey and evaluate different embedded HTTP servers running on Linux

and/or VxWorks for the MilGate.
• Survey and evaluate different client Frameworks and describe the tools of-

fer by that framework to consume web services.
• Survey the interoperability between web services and description of WS-I

tools

The resulting chapter are “3.1 Embedded HTTP server” and “6. Web Service
Tools”

David Schneider studies the feasibility for HTML generation within the MileGate
and recommends a implementation.
Afterward a Web Service will be described using WSDL and with it the auto-
matic transformation to exchanged SOAP messages. The transformation from
description files to WSDL and from SOAP to the proprietary XML format have
to be adapted and described.
The resulting chapter are “2. Introduction into Web Services”, “3.2 HTML gen-
eration service” “4. Web Service Description”, “5. Web Service Concepts” and
the Annexes XML, XSLT and HTML Service

The initial planing (Gant diagram) is represented as Annexe:Planing

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 12 of 117

1.3 What is MileGate?

MileGate is an IP-based multi-service next-generation access platform that
can support you in expanding your network so that it is fit for the future.
MileGate combines carrier grade broadband access, telephony and data inter-
face in one single, compact access platform.
By using MileGate you can migrate whole or parts of your telecommunications
network to the NGN. Expand your range of services to include new, high qual-
ity Triple Play and broadband business services, and continue to provide the
range of traditional telephony and data services at the same time, without
having to rely on two systems.1

The system has one core unit and the possibility to plug 20 other units with
different interfaces. As an example the MileGate provides up to 960 xDSL or
456 COMBO connections (POTS and ADSL2plus).

1.3.1 Flexibility in interfaces

Wide range of interfaces that can be mixed:

• POTS (Plain Old Telephone Service)
• ISDN
• ADSL/ADSL2/ADSL2plus
• VDSL2
• SHDSL
• COMBO solution (POTS and ADSL2plus)
• Optical Ethernet (100BaseFx or GbE)
• Electrical Ethernet (100BaseT)
• Legacy data interfaces (E1, V.35, V.36, X.21)

1 http://www.keymile.com/media/en/internet/products/milegate/z_brochures/MileGate_Product_Overview.pdf

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 13 of 117

Illustration 6: MileGate

1.4 General structure of the MileGate

This section describes the important parts of the MileGate structure and some
mechanisms needed for the implementation of the interfaces. This section
provides an abridged version of the annexe:HTML Service.

1.4.1 Structure of the Object Model

The structure has been studied on the basis of the actual MileGate Configura-
tion Software Tool (MCST) and the document “Introduction to the MileGate
XML Management Interface”.
We have to clarify at the very beginning that no direct access to functions on
the embedded system is provided. Information exchange with the MileGate
needs to be modelled according to the Managed object model (MOM). The
managed objects (MOs) are an abstract view of resources (i.e. physical or lo-
gical parts of the equipment to be managed).

The tree of Managed Objects (MO) builds a hierarchical model.

Illustration 7: MileGate Object Model structure

Each MO has its proper set of Management Functions (MF) depending on the
type. The possible management functions are: Main, Configuration, Fault Man-
agement, Performance Management and Status.
This properties are the parameters that can be modified over the interface.

Additional information about the complete structure of the MileGate 2500
management functions, the mechanism for discovering the connected units,
structure of the MileGate Accesspoint Description File (ADF), MCST GUI gener-
ation mechanism or MCST adaptation mechanism are represented as “annexe:
HTML Service” on the chapter “3.3 Object Model and the actual management
system MCST”.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 14 of 117

ne: MileGate 2500
MO

unit-1
MO

unit-2
MO

unit-3
MO

unit-21
MO

.

port-1
MO

port-1
MO

port-32
MO

. . . .

Property:
-label

- alarm serverty

Property:
-VLAN priority mapping

-software on unit

Property:
-rate limiter

-operation status

1.5 Constraints for MileGate

Due to the fact that MileGate is running embedded, there are some constraints
we have to mention for the definition of our services.

1.5.1 Processor

The actual management system (MCST) generates a lot of request towards
the management interface. Amelioration is possible but not vital.
Performance limitations rather have to be considered at the implementation of
the HTML Service, HTTP Servers and the transformation Services. The genera-
tion of the HTML files and its storage uses much more system resources the
the sending of KOAP messages .

CPU: PowerPC 603E (~400MHz)

1.5.2 Memory

The memory of the MileGate is limited and has to be used with fully aware.
The program itself need to be adapted to the KEYMILE coding rules.
The number of saved HTML pages should be as small as possible (We have to
be aware of the huge number of properties for a fully equipped MileGate)
HTML is pure text and does not use lot of memory.
A memory footprint of a single program should not be bigger than 1 MB.

Core Card: 128MB / 256MB of RAM
128MB Flash Memory (no hard disk drive)

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 15 of 117

1.6 Communication with the MileGate

This section was important for the definition of the interfaces as they all have
to communicate with the embedded system.

For the communication with the MileGate, each management interface has an-
other manner to communicate. As example, the communication over USB has
not lot of similarities with the communication over a command line client. An
very important and for all the interfaces common part is the use of KEYMILE's
proprietary KOAP messages. This communication is described briefly in this
section.

1.6.1 Client-Server system

KOAP is a proprietary XML protocol which is transported over a proprietary
message transport protocol.
It is a matter of a simple request-response system. The client is allowed to
send request and the server (MileGate management interface) returns a re-
sponse with the an indication whether the request was successful or had an
error.
The KOAP protocol additionally offers the possibilities to send attachments.
All the services handling the configuration must access this management in-
terface.

1.6.2 Format of the requests and responses

The following paragraph shows how the KOAP should look like.
The embedded system accepts request which looks as followed:

<?xml version=”1.0” encoding=”utf-8”?>
<request version=”1” seq=”1” destAddr=”/unit-1/port-1”>

<mdomain id=”main”>
<operation seq=”1” name=”setLabel”>

<Label>
<user>User1</user>
<service>Service1</service>
<description>Description1</description>

</Label>
</operation>

</mdomain>
</request>
Code 8: KOAP request

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 16 of 117

The request addresses the Management Object Type (MO Type) “/unit-1/port-
1” and the Management Function (MF) “main”. The called function is named
setLabel and requires the XML formatting shown .

To observe the response, we change from set to getLabel because the set
function used just before won't deliver any content. The response looks as fol-
lowed:

<?xml version=”1.0” encoding=”utf-8”?>
<response version=”1” seq=”1” destAddr=”/unit-1/port-1”>

<mdomain id=”main”>
<operation seq=”1” name=”getLabel”>

<execution status=”success”/>
<Label>

<user>User1</user>
<service>Service1</service>
<description>Description1</description>

</Label>
</operation>

</mdomain>
</request>
Code 9: KOAP response

The response has the same parameters as the request. Additionally the tag
<execution> with the parameter status=”success” has been added into the
tag <operation>. An unsuccessful response would contain the execution para-
meter status=”proc_error”.
Within the <operation> tag, the values just send before in the setLabel func-
tion were returned.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 17 of 117

2 Introduction into Web Services

Abstract

This chapter introduces the necessary knowledge concerning the Web Service
and its architecture. The Service Oriented Architecture and the Web Service Archi-
tecture will be introduced.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 18 of 117

2.1 SOA (Service-Oriented Architecture)

Before we introduce the Web Service Architecture, we need to mention some
basics of the Service Oriented Architecture. This is necessary because the Web
Service Architecture extends the Service Oriented Architecture.

W3C provides the following equation which interconnects the two words:

World Wide Web (WWW) + Service Oriented Architecture (SOA)
= Web Service Architecture

2.1.1 Architecture

The name indicates the basic idea behind this architecture, it is service ori-
ented. We will not describe the SOA in detail, more information can be found
under the references mentioned.

Main advantages of the SOA are that it facilitates manageable growth of enter-
prise systems and can reduce the costs for cooperation between organizations.

As most of the IT infrastructures and its organization have grown with a pil-
lars-like architecture, the changeover to a SOA will be very difficult and time-
consuming.

The following graphic illustrate this problem very well:

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 19 of 117

Illustration 10: Before & sfter SOA

The following illustration shows the famous triangle of Service Oriented Archi-
tectures. Roles are described briefly afterwards.

Service Provider
The service provider publishes the service. A description of the service is
provided. The provider hosts and controls the access to the service.

Service Consumer
A service consumer interacts with the service via a service client. He can find
services by querying the service broker. This role can be driven by an end
user or by another service.

Service Broker (optional)
The service broker provides the directory service and allows service providers
to publish and service costumer to find services. This role is optional, the ser-
vice can also be found otherwise.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 20 of 117

Illustration 11: Three roles in SOA

2.1.2 Basic characteristics of a SOA

A good summary of the basic characteristics of a SOA can be found in the
technical library of IBM. The document is a recommendation to improve a Ser-
vice Oriented Architecture and contains inter alia the following principles for a
SOA.2

Guiding principles:
• Reuse, granularity, modularity, composability
• Compliance to standards (both common and industry-specific)
• Services identification and categorization

Specific architectural principles:
• Separation of business logic from the underlying technology
• Single implementation and enterprise-view of components
• Life cycle management
• Efficient use of system resources

2http://www.ibm.com/developerworks/webservices/library/ws-improvesoa/

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 21 of 117

http://www.ibm.com/developerworks/webservices/library/ws-improvesoa/

2.2 Web Service Architecture

This chapter introduces the Web Service Architecture with its basic concept.
We also want to introduce here the different organizations and task forces
which standardize the concepts behind this architecture.
As we mentioned before, the Web Service Architecture extends a Service Ori-
ented Architecture.

2.2.1 Definition

The definition of W3 published in the Web Services Architecture Require-
ments:3

« A Web service is a software system identified by a URI [RFC 2396], whose
public interfaces and bindings are defined and described using XML. Its defini-
tion can be discovered by other software systems. These systems may then
interact with the Web service in a manner prescribed by its definition, using
XML based messages conveyed by Internet protocols. »

2.2.2 Basic Concept

The basic components of a Web Service Architecture are:
• Communication
• Service Description
• Directory Service

The W3 recommends for the communication of Web Services the use of SOAP,
its specification defines the XML-based message format and how it is embed-
ded into a transport protocol. SOAP is mostly transported over HTTP but is not
at all dependent on this transport protocol.
WSDL, also XML-based, is used to describe the Web Service.
Directory service specifies a standardized structure for the management of
Web Service metadata. A possible directory service is UDDI. This service,
which corresponds to the Service Broker of the SOA, is optional.

3 Source: http://www.w3.org/TR/wsa-reqs/

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 22 of 117

http://www.w3.org/TR/wsa-reqs/#RFC2396

2.2.3 Standardization

W3C4:
Founded in 1994 by Tim Bernes-Lee at the Massachusetts Institute of Techno-
logy, Laboratory for Computer Science (MIT/LCS) with support of the CERN in
Geneva, the DARPA (Defense Advanced Research Project Agency) and the EU
(European Union).
Multiple task forces are engaged in standards for HTML, XML, SOAP and
WSDL. Interesting for the future will be standards as RDF (Resource Descrip-
tion Framework) and OWL (Web Ontology Language) concerning the semantic
web.

OASIS5:
The Organization for the Advancement of Structured Information Standards,
originally founded in 1993 as a cooperation of commercial enterprises, has its
focus on standards of the topic e-business. Beside Web Services they provide
techniques as UDDI, ebXML(electronic business using XML) and WS-
BPEL(Business Process Execution Language).

IETF6:
The Internet Engineering Task Force defines more technique oriented stand-
ards and is therefore less conspicuous on Web Service design tasks. The most
important standards by IETF are TLS (Transport Layer Security), LDAP (Light-
weight Directory Access Protocol) and IPv6 (Internet Protocol version 6).

WS-I7:
Web Service Interoperability Organization does not publish any standards. The
focus lies on the examination of concrete specifications and the implementa-
tion of different producers and guarantee the interoperability of them.
Profiles were defined to describe how to use the implementation of the differ-
ent producers.

4http://www.w3.org
5http://www.oasis-open.org
6http://www.ietf.org
7http://www.ws-i.org

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 23 of 117

http://www.ws-i.org/
http://www.ietf.org/
http://www.oasis-open.org/
http://www.w3.org/

3 Traditional web service

Abstract

This chapter continues on the traditional web service introduced before and con-
tains our project side issues “survey of embedded HTTP servers” and “service for
HTML generation”.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 24 of 117

3.1 Embedded http server

An embedded web server works the same way a standard web server does.
The difference lies in its performance (usage, resources, memories, etc…) be-
cause it is downloaded on devices.
It allows to access, communicate and control remotely the device through a
traditional browser or a particular interface of communication

Embedded

http

Server

Management & configuration

Management & configuration

HTTP/S Conncetion

Human-Machine Interface

Machine-Machine Interface

(Browser)

(Application
Server)

MileGate 2500

Illustration 12: Milegate case

For MileGate constraints (memory & processor limits) see 1.5.1 & 1.5.2

3.1.1 Selective criteria of servers

To compare different servers, we narrowed the long list of « light » servers.
That list is presented in 2. We considered the following points to come to that
conclusion:

Popularity: A popular application has an important FAQ and many forums
that solve an array of problems.

Last release date: For security reason it is important to know how often the
server is updated and the availability of updated and new versions.

Memory footprint: As the server will be used for embedded devices, it is
very important to know the size and space the application needs to run as well
as its effect on the processor.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 25 of 117

Development language: According to KEYMILE’ requirements, the develop-
ment language can only be C or C++.

Operating System: The server will support at least an embedded Linux.

Multi-thread: use a separate process/thread for each request.

Poll: on sockets, process requests with a single process.

However, many of these servers are also available for Vxworks, Mac,
FreeBSD, Posix and so on…

3.1.2 Required field

To properly compare different servers, we define three main domains of as-
sessment. They are:

• Security
• Dynamic content
• Common functionality

3.1.2.1 Security

Three sub-categories exist:

Authentication: we evaluate the type of authentication that the server offers
- Basic or Digest. The possibility to connect to an authenticated server such as
RADIUS or KERBEROS is not considered because KEYMILE already fulfilled that
requirement.

HTTPS: It is important to know if the server offers a secure connection
(SSL/TLS protocol over HTTP) or not. In case it supports SSL/TLS, it is neces-
sary to know if it is possible to use Mocana SSL Stack (now nanoSSL) to en-
crypt exchanged messages because KEYMILE already has bought a license of
this software.
Remember that SSL/TLS authenticates endpoints and encrypts channels to
provide session privacy and security on the internet.
Do not confuse IPSec which is an IP layer protocol (that enables the sending
and receiving of cryptographically protected packets: TCP, UDP, ICMP…) and
SSL/TSL which is an application layer protocol mostly utilized to protect HTTP
transaction over TCP only.

OpenSSL: The possibility to use OpenSSL library so it remains free and more
importantly OpenSource.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 26 of 117

3.1.2.2 Dynamic content

This part informs on the technology to use to generate dynamically informa-
tion that the server will make available. They are mainly:

CGI (Common Gateway Interface): with the help of a program written in
any language (C/C++, Perl, Python…) it allows to generate information to be
published through data provided by the user (client).

FastCGI: An Advanced form of CGI
Each http request is processed in a unique way with the standard GGI. There-
fore, the server is overworked whenever there are important activities (many
requests means many process). It is for that reason that FastCGI was built to
process a bigger number of http requests.

SSI/SSJ (Server Side Includes / Server Side JavaScript)
• SSI is a programmable technical for web application. It allows helping

and building an HTML document from several documents. In fact, it is a
code generated out of the thin air and included in an HTML page when
browsing other documents. The server later translates the HTML docu-
ment and displays it to the user.

• SSJ it is simply a javaScript for a server. It is increasing in usage as it al-
lows to generate a script by the server for the client. The script is sent
and executed on the user’s interface (browser), and then displayed in-
formation according to the results obtained on the user’s device.

C/C++ (Dynamic page scripting in C/C++) : a C/C++ module is integ-
rated with the server compiled binary code; without an intermediate layer as
CGI or PHP and it is specially suited for low-resource (embedded) systems.
This allows dynamic pages to be written in C/C++.

3.1.2.3 Common functionality

We tried to group other valuable data:

Compression: Possibility to compress the exchanged messages.

Segmentation or chunking: Useful when exchanged messages are bigger
than 1500 Octets.

Session / cookies: Possibility to use sessions and manage cookies.

Documentation : if a fonctionnality description document is available.

Support IPv6: If IPv6 is supported

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 27 of 117

3.
1.

3
Li

st
 o

f f
ew

 e
m

be
dd

ed
 s

er
ve

rs

O
n
 t

h
e

ta
b
le

 b
el

o
w

,
th

er
e

is
 a

 l
is

t
o
f
se

ve
ra

l
se

rv
er

s
d
es

ig
n
ed

 f
o
r

d
if
fe

re
n
t

u
sa

g
e.

T
h
er

e
ar

e
w

eb
 s

er
ve

rs
 t

h
at

 c
an

b
e

em
b
ed

d
ed

 o
n
 d

ev
ic

es
.

Le
g
en

d
:

‘‘
’’

m
ea

n
s

th
e

fe
at

u
re

 i
s

p
re

se
n
t

o
th

er
w

is
e

‘‘-
’’

J
J

 :
 v

er
y

p
op

u
la

r
;

 J
 p

op
u
la

r
;
K

 :
 l
it
tl
e

u
se

d

L

 :
 r

ar
el

y
u
se

d
??

 m
ea

n
s

fe
at

u
re

 n
o
t

fo
u
n
d

O
ve

rv
ie

w
Se

rv
er

 n
am

e
O

.S
D

ev
.

La
ng

ua
ge

G
en

er
at

e
dy

na
m

ic
al

ly

w
eb

 p
ag

es

Li
ce

ns
e

/
O

pe
n

So
ur

ce

Sh
ar

ew
ar

e
/

fr
ee

M
ul

ti-
th

re
ad

/ P

ol
l

M
em

or
y

Fo
ot

pr
in

t
(K

B
)

W
id

el
y

us
ed

R
el

ea
se

 D
at

e
(S

ta
bl

e
V

er
si

on
)

A
pp

W
eb

 E
m

be
dd

ed

Li
nu

x…
C

++
Y

es
D

ua
l

Li
ce

ns
e*

 /
ye

s
 /

 /
80

0
J
J

20
08

-0
3-

14
(2

.4
.2

)

G
oA

he
ad

Em
be

dd
ed

Li

nu
x…

C
Y

es
 D

ua
l

Li
ce

ns
e

/
ye

s
 /

- /

60

J
20

03
-1

2-
02

(2
.1

.8
)

K
lo

ne
U

ni
x,

 L
in

ux
,

W
in

do
w

s…
C

Y
es

D
ua

l
Li

ce
ns

e
*/

ye

s
 /

- /

11
0→

35
0

K
20

09
-0

3-
06

(2
.2

.0
)

N
ic

he
St

ac
k

H
TT

PS
er

ve
r

A
ny

 1
6

or

32
bi

t
em

be
dd

ed
C

Y
es

C
lo

se
d

so
ur

ce
 /

-
- /

??

L
?? (3
.1

)

B
ar

ra
cu

da

W
eb

 S
er

ve
r

Em
be

dd
ed

sy

st
em

(L

in
ux

…
)

C
Y

es
D

ua
l

Li
ce

ns
e

/ N
o

 /
-

 /
**

J
??

TE
LE

C
O

M
-W

S
M

an
ag

e
Te

le
co

m
m

un
ic

at
io

n
eq

ui
pm

en
t u

si
ng

 W
eb

 S
er

vi
ce

s
Pa

ge
 2

8
of

 1
13

R
om

Pa
ge

r
A

ny

O
pe

ra
tin

g
sy

st
em

C
Y

es
C

om
m

er
ci

al

Li
ce

ns
e

/ N
o

 /
-

- /

**
J
J

??

Fu
si

on
 h

ttp

Se
rv

er
Em

be
dd

ed

de
vi

ce
s

C
Y

es
C

om
m

er
ci

al

Li
ce

ns
e

/ N
o

 /
-

 /
7→

11
L

??

B
oa

un
ix

C
, p

er
l

Y
es

G
PL

 /
Y

es
- /

??

12
0

L
20

05
-0

2-
23

(0
.9

4.
14

)
Li

gh
ttp

d
U

ni
x,

 L
in

ux
,

W
in

do
w

s…
C

Y
es

B
SD

/ Y
es

- /

- /

??
J

20
09

-0
6-

19
(1

.4
.2

3)
ng

in
x

U
ni

x,
 L

in
ux

,
W

in
do

w
s…

C
Y

es
B

SD
/ Y

es
- /

??

 /
48

0
J

20
09

-0
6-

22
(0

.7
.6

1)

ch
er

ok
ee

U
ni

x,
 L

in
ux

,
W

in
do

w
s…

C
Y

es
G

PL
 /

Y
es

- /

??
 /

68
6

??
20

09
-0

7-
01

(0
.9

9.
20

)

O
be

lis
k-

H
ttp

A
ny

 O
S

w
ith

 P
yt

ho
n

Py
th

on
Y

es
G

PL
 /

Y
es

- /

 /
50

L
20

07
-0

5-
28

(0
.4

.4
)

W
T

U
ni

x,
 L

in
ux

,
W

in
do

w
s…

C
++

Y
es

D
ua

l
Li

ce
ns

e*
 /

ye
s

 /
 /

25
0

L
K

T
ab

le
 1

3
:

Li
st

 o
f
em

b
ed

d
ed

 s
er

ve
rs

*

 =

 G
PL

 (
G

en
er

al
 P

u
b
lic

 L
ic

en
se

)
an

d
 c

o
m

m
er

ci
al

 l
ic

en
se

s
*
*
=

 T
h
e

o
ff
ic

ia
l
w

eb
 s

it
e

w
ri
te

s
“s

m
al

l
fo

o
tp

ri
n
t”

 b
u
t

d
o
es

n
’t
 p

re
ci

se
 h

o
w

 s
m

al
l
is

 i
t.

TE
LE

C
O

M
-W

S
M

an
ag

e
Te

le
co

m
m

un
ic

at
io

n
eq

ui
pm

en
t u

si
ng

 W
eb

 S
er

vi
ce

s
Pa

ge
 2

9
of

 1
13

3.
1.

4
C

om
pa

ra
tiv

e
ta

bl
e

of
 fe

w
 s

er
ve

rs

3.
1.

4.
1

Fr
ee

 s
er

ve
rs

Fe
at

ur
es

Se
cu

ri
ty

D
yn

am
ic

 C
on

te
nt

C
om

m
on

 fu
nc

tio
na

lit
y

Se
rv

er

na
m

e
A

ut
he

nt
ifi

ca
tio

n
(B

as
ic

, d
ig

es
t..

)
SS

L/
 w

hi
ch

 S
SL

st

ac
k

O
pe

nS
SL

C
G

I /
 F

cg
i

PH
P

SS
I/S

SJ
C

 /C
++

Se
ss

io
n

/
C

oo
ki

es
C

om
pr

es
si

on
 /

ch
un

ki
ng

IP
V

6
D

oc

A
pp

W
eb

 /
Y

es
/M

at
rix

SS
L

&

O
pe

nS
SL

Y
es

/-
Y

es
/

Y
es

 /
- /

Y

es
Y

es

K
lo

ne
 /

Y
es
/O

pe
nS

SL
Y

es
/-

Y
es

 / -
Y

es
 /

/ -
??

Y
es

G
oA

he
ad

- /

Y
es
/ ?

?
??

/-
N

o
- /

N

o
N

o
N

o
??

??

Li
gh

ttp
d

 /
Y

es
/O

pe
nS

SL
Y

es
/

Y
es

 / -
N

o
N

o
/ -

Y
es

Y
es

N
gi

nx
/-

Y
es
/O

pe
nS

SL
Y

es
- /

N

o*
 / -

N
o

N
o

 /
Y

es
Y

es

T
ab

le
 1

4
:

H
T
T
P

Fr
ee

 H
T
T
P

S
er

ve
rs

*

:
N

o
t

d
ir
ec

tl
y

su
p
p
o
rt

ed
 b

u
t

N
g
in

x
su

p
p
o
rt

s
Fa

st
C
G

I
te

ch
n
o
lo

g
y

to
 w

or
k

w
it
h
 m

an
y

ex
te

rn
al

 t
o
o
ls

 a
n
d
 s

er
ve

rs
.

PH
P
 i
ts

el
f

ca
n
 b

e
ru

n
n
ed

 a
s

Fa
st

C
G

I
ap

p
lic

at
io

n
 a

n
d
 c

an
 p

ro
ce

ss
 F

as
tC

G
I

re
q
u
es

ts
 f
ro

m
 n

g
in

x.

TE
LE

C
O

M
-W

S
M

an
ag

e
Te

le
co

m
m

un
ic

at
io

n
eq

ui
pm

en
t u

si
ng

 W
eb

 S
er

vi
ce

s
Pa

ge
 3

0
of

 1
13

3.
1.
4.
2

S
ha

re
w

ar
e

se
rv

er
s

Fe
at

ur
es

Se
cu

ri
ty

D
yn

am
ic

 C
on

te
nt

C
om

m
on

 fu
nc

tio
na

lit
y

Se
rv

er
 n

am
e

A
ut

he
nt

ifi
ca

tio
n

(B
as

ic
, d

ig
es

t)
SS

L&
 w

hi
ch

SS

L
st

ac
k

O
pe

nS
SL

C
G

I /

Fa
st

cg
i

W
SD

L
co

m
pi

le
r /

SO

A
P

A
PI

PH
P

SS
I/S

SJ
C

 /C
+

+
X

m
l →

 C

co
m

pi
le

r
C

om
pr

es
si

on
 /

ch
un

ki
ng

IP
V

6
D

oc

R
om

Pa
ge

r ²
??

??
??

 /
??

??
Y

es
Y

es
??

??
??

N
ic

he
St

ac
k

H
TT

PS
er

ve
r

 /
Y

es
/N

ic
he

St
ac

k
SS

L

N
o

/ -
N

o
N

o
/ -

Y
es

N
o

- /
Y

es
??

Fu
si

on
 W

eb
 ²

??
??

??
??

 /
??

??
Y

es
Y

es
 /

Y
es

??

W
T

N
o

Y
es
/O

pe
nS

SL
ye

s
-/

??
N

o
- /

Y
es

??
 /

??
??

T
ab

le
 1

5
:

S
h
ar

ew
ar

e
H

T
T
P

S
er

ve
rs

²
:

Fu
si

o
n
 W

eb
 P

ro
d
u
ct

 S
u
it
e

of
 U

n
ic

o
i
S
ys

te
m

.
U

n
ic

o
i’s

 W
eb

 P
ro

d
u
ct

 S
u
it
e

in
cl

u
d
es

 t
h
e

W
eb

Pi
lo

t
B
ro

w
se

r,
 F

u
si

on
 H

T
T
P
 C

lie
n
t

&

S
er

ve
r,

 F
u
si

on
 X

M
L

S
A
X
 P

ar
se

r,
 F

u
si

on
 X

M
L

D
O

M
 P

ar
se

r,
 F

u
si

o
n
 X

M
L-

to
-C

 C
o
m

p
ile

r,
 F

u
si

on
 S

O
A
P

C
lie

n
t

&
 S

er
ve

r,
 a

n
d
 F

u
si

o
n

W
S
D

L
C
o
m

p
ile

r.

S
ee

 h
tt

p
:/

/w
w

w
.u

n
ic

o
i.
co

m
/p

ro
d
u
ct

_
su

it
e_

p
ag

es
/f

u
si

o
n
_
w

eb
_
p
ro

d
u
ct

_
su

it
e.

h
tm

 f
o
r

m
o
re

 d
et

ai
ls

..
.

R
o
m

Pa
g
er

 i
s

on
e

o
f
p
ro

d
u
ct

s
o
f
A
lle

g
ro

 c
o
m

p
an

y.
 I

t
o
ff
er

s
a

se
t

of
 p

ro
d
u
ct

s
w

h
ic

h
 c

an
 b

e
ve

ry
 i
n
te

re
st

in
g
 f

or
 u

sa
g
e

(R
o
m

X
M

L,

R
o
m

S
O

A
P,

 R
o
m

W
eb

C
lie

n
t

S
ec

u
re

…
)

S
ee

 h
tt

p
:/

/w
w

w
.a

lle
g
ro

so
ft

.c
o
m

/p
ro

d
u
ct

s.
h
tm

l
 f
o
r

m
o
re

 d
et

ai
ls

..
.

T
o
 g

et
 m

o
re

 i
n
fo

rm
at

io
n
 w

e
m

u
st

 s
en

d
 a

 m
ai

l
to

 t
h
o
se

 c
o
m

p
an

ie
s.

 W
h
at

 w
e

h
av

e
n
o
t

d
on

e.
 O

th
er

w
is

e
it
 w

ou
ld

 b
e

in
te

re
st

in
g
 t

o
kn

o
w

 t
h
e

tr
u
e

p
o
te

n
ti
al

 o
f

th
ei

r
p
ro

d
u
ct

s.

TE
LE

C
O

M
-W

S
M

an
ag

e
Te

le
co

m
m

un
ic

at
io

n
eq

ui
pm

en
t u

si
ng

 W
eb

 S
er

vi
ce

s
Pa

ge
 3

1
of

 1
13

3.1.5 Classification of compared servers

The following tables are used to classify the different servers, according to the
needs of Keymile.

C/C++ Support
Nano SSL

OpenSSL Compress /
Chunking

Other SSL
Stack

Auth : B /D Free/Open
Source
(F/O)

credits 5 4 2 2/2 1 1/1 1/3
Table 16: HTTP server classification credits

Memory
footprint

≤ 200 KB ≤ 400 KB ≤ 600 KB ≤ 800 KB ≤ 1 MB

credits 8 6 3 2 1
Table 17: HTTP server classification memory footprint

Servers C/C++ Nano Other
ssl

OpenS
SL

Com/ch
unk.

Auth B/
D

Foot-
print

F/O Total

AppWeb 5 - 1 2 2 1+1=2 2 3 17
Klone 5 - 1 2 2 1+1=2 6 3 21
GoAhead - - 1 - - 1 8 3 13
Lighttpd - - 1 2 2 1+1=2 1 1+3=4 12
Nginx - - 1 2 2+2=4 1 3 1+3=4 15
WT 5 - 1 2 2+2=4 - 6 3 21
Table 18: HTTP server classification

3.1.6 Few suggestions of server web generating content dynamically

3.1.6.1 Web server with incorporated module C/C++

According to our point system, Klone and WT SDK are the http servers that
match the most with Keymile' requirements. So, for web server with incorpor-
ated module C/C++, it’s better to use
KLone is a fully-featured, multiplatform, web application development frame-
work, targeted especially for embedded systems and appliances.
It is a self-contained solution which includes a web server and an SDK for cre-
ating web sites with both static and dynamic content.
When using KLone, there's absolutely no need for any additional component:
neither the HTTP/S server (e.g. Apache, Netscape, Roxen), nor the typical act-
ive pages engine (PHP, Perl, ASP, Python).
KLone does everything, and does it fast and small.
KLone blends the HTTP/S server application together with its content and con-
figuration into a single executable file.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 32 of 117

The site developer writes his/her dynamic pages in C/C++ (in usual scripting
style: <% code %>) and uses KLone to transform them into embeddable,
compressed native code with the native C/C++ compiler.
It’s also possible to use WT library.
In fact Wt is a C++ library and application server for developing and deploying
web applications. It is not a 'framework', which enforces a way of program-
ming, but a library.
A web application developed with Wt is written in only one compiled language
(C++), from which the library generates the necessary HTML/XHTML, Javas-
cript, CGI, SVG/VML/Canvas and AJAX code. The responsibility of writing se-
cure and browser-portable web applications is handled by Wt.
However, it is possible to generate web pages with other processes.

3.1.6.2 Web server using SSI / SSJ

Another way to generate contents dynamically is the using of SSI or SSJ. We
propose AppWeb for that technology. It possible to use Server Side JavaScript
its JavaScript framework (Ejscript) as well as a Server Side Includes via CGI
programming and its C++ library as another alternative for development.

The major disadvantage is the weight of the memory footprint: 800 KB- to
heavy?!

3.1.6.3 Web server with incorporated module CGI / FastCGI

regardless of AppWeb, we can use some web servers which can also generate
dynamic contents by using CGI or FastCGI programming. Lighttpd and Nginx
are some examples.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 33 of 117

3.2 HTML generation service

The objective of this section is according to the project objectives to find a
good way to generate on the fly HTML pages within the MilGate which is
providing a web browser access.
In this section, the necessary background will be provided, the feasibility stud-
ied and at the end a proposition for the implementation given.
This section provides an abridged version of the chapters 2, 4 and 5 of the
“annexe:HTML Service”.

3.2.1 Background

It would be interesting to offer a possibility to display and modify the configur-
ation of the MileGate network device for humans. The most simple and stand-
ardized way is to provide the access via a web browser as a lot of other net-
work devices as routers, modems, access points or switches do.
Our only interface to access the data or configuration parameters is the
MileGate Object Model with its proprietary communication protocol.

For further treatment of the data for the presentation layer, we need to know
the overall structure of the configuration (possible parameters) which needs to
be parsed from an XML Schema, the ADF (proprietary AccessPoint Definition
File) or in the future from the description of our Web Service (WSDL File).

3.2.2 Business functions

The aim is to analyse the feasibility of a service on the MileGate which creates
HTML pages on the fly (run-time). It must be possible to change the configur-
ation of the MileGate via an web browser.
It is not possible and not wished to to have the complete information in the
memory because we would create redundancy which is complex to manage.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 34 of 117

Illustration 19: System structure

It is imaginable to save the navigation structure on the system but all the data
will be requested on use.
The service must be adaptable with a modular structure. Also the presentation
layer and the logic must be separated strictly.

3.2.3 Feasibility study

3.2.3.1 Identify problems for implementation

Problem Description Mitigation

Parsing HTML It is difficult to extract in-
formation from HTML pages
as it doesn't have a well
defined structure.

The parsing of XML is much easier
in C++. It could be a good solu-
tion to use XHTML instead of
HTML.

Memory limitation
for complete data-
base. We can either
create a DB for the
service or always
request the wanted
parameters.

DB:
+ must get just modified
parameter for regeneration
- memory

Direct output:
+ simpler to implementation
- content of entire page must
be requested on each modi-
fication

Creation of a DB probably won't be
necessary for this implementation.
We create additional problems
caused by duplicating the data.
Likewise is the implemented SAX
parser on MileGate not optimal for
the creation of a DB.
It's better to keep the number of
request as small as possible.

Menu structure The menu is complex but
needs to be well arranged at
the same time.

A good technique to use would be
a solution based a tree menu (ex-
ample JavaScript) for the naviga-
tion within the nodes and kind of
pop-up menu for the management
functions.

Refresh of naviga-
tion menu on inser-
tion of new unit

The menu must be updated
(rewrite HTML page) if a new
unit is inserted. On the
browser it can be reloaded
automatically with a refresh
timing.

We need to detect the low-level
interrupt!

To find the accurate method the
survey of the MCST will be helpful.

File transfer on
HTML

The actual system initiates
file transfer with a tag and
adds the file just behind. This
is possible due to the protocol
is no standardized.

Here we have to study how to use
HTTP/Put in C++

Acknowledge on
modification

If the user modifies a para-
meter, he needs to be sure

We can not send messages to the
user with HTML (HTTP Server is

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 35 of 117

that the operation was suc-
cessful.

between service and client). The
only possibility is to print error
messages on the HTML page which
will be visible on the next reload.

Config of multiple
Managed Objects
(MO's)

The MCST GUI offers the pos-
sibility of configuring multiple
MO's with one action.

This is difficult to implement in
HTML, the task needs further stud-
ies.

Connection Man-
ager
(access the node)

The MCST GUI offers a con-
nection manager which is
user dependent.

The connection parameters of the
users can not be managed trough
the server. It is possible to use
cookies to save connection para-
meters on the users web browser.

Customizing the
GUI / Custom tool-
bar

A helpful add-on of the MCST
is the customizable interface.

It will be very challenging to im-
plement a customizable HTML
page. The feasibility and its ad-
vantages should be studied in a
further task.
A custom toolbar is rather conceiv-
able. It must also be saved on the
client machine with a technologie
such as cookies.

Printing option /
Table CSV export

The MCST GUI offers a print-
ing option and table export
possibilities for spreadsheet
programs.

Printing in HTML is obtainable with
a well formated page or a addi-
tional stylesheet.
The export possibility is more diffi-
cult and probably not supported in
HTML. The CSV files may need to
be generated within our HTML Ser-
vice instead.

Table 20: Problems of HTML service and mitigation

3.2.4 Recommendation for Implementation

This topic contains our recommendation for the implementation of the HTML
Service and an example user interface. The recommendations are based on
the prior studies and converge in the basic structure towards the actual
management system. This was necessary because no deep study on the struc-
ture of the look and feel was performed and with this, no change can be re-
commended.
We want a product which is as modular and adaptable as possible. To achieve
this we certainly need a strict separation between logic and presentation.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 36 of 117

N
E
X

T
 N

O
D

E

N
E
X

T
 C

H
IL

D

3.2.4.1 Operation of the HTML Service

At the initiation of the HTML service, the entire navigation structure has to be
generated. The result of this will be accessible by the client after the step 7 of
the Sequence Diagram. The connection itself does not evoke the initiation of
the service, the structure needs to existing already at this point of time.
The following points visualize the basic functionality of the service and de-
scribe how the service can figure out the structure of the node.

Illustration 21: Operation of the HTML Service

It has to be said that the parsing of objects has to be recursive which is not
represented in this flowchart.

3.2.4.2 GUI Prototype

The menu is the most important part of the website because it defines the way
we can navigate trough the sites and with this the ease of use. Basically we
have the root node with its units and ports. Further a technique need to be
evaluated to add maximal five additional menus to access the further naviga-
tion structure (Main, Configuration Management, Fault Management, Perform-

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 37 of 117

Detect node (<moType>) with Discover Message

Parse the structure of the AccessPoint Definition File of each group
(mf->group->property: each property gives one page (=menu point))

The Node has to be added to the navigation menu

The Discover Message shows what kind of children <ChildrenList> are
plugged

The children has a <state> tag which indicates if the node is empty or not.

Discover Node

Parse ADF

Generate HTML

Parse Children

Node empty
NO

YES

ance Management and Status) of each node. Possibilities are a second naviga-
tion frame or a pop-up accessible by the right mouse button.
The following illustration provides a GUI prototype with a second navigation
frame and pull down menus.

Illustration 22: GUI prototype

The website needs to be built with frames. That way we can use one single
menu (left) on every other page. In function of the selection on the left side,
the top menu and its menu points (top) need to change. As described before,
the structure of this menu is defined in the ADF file for any possible kind of
node.
If the user clicks on a navigation point, the real task for the service has to be
performed. As we do not want to save the pages with the parameters any-
were, we have to generate the entire content (exclusive of menus) at this
point of time.

Request of content:

This list describes the activities of the program on a request of any content
elements.

1. The possible form fields, check boxes, combo boxes, tables or buttons of
one content frame are defined in the ADF file and need to be parsed.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 38 of 117

send

pr
e-

ge
ne

ra
te

d

dy
na

m
ica

lly

ge
ne

ra
te

d

2. Transformation between ADF XML and HTML/XHTML has to be performed
3. To get the values we have to send KOAP messages with indication which

parameters we would like (in the example case it would be:
request destAddr=”/”, mdomain id=”cfgm”,
operation name=”getPriorityMapping”)

4. The service needs to merge the XHTML code and the parameters
5. Finally the XHTML has to be saved on memory
6. With a proper configuration of the HTTP Server, the file is now accessible

by the user

3.2.4.3 Reaction on changes

The system needs to react to modification automatically. Modifications are
possible on different interfaces such as CLI, MCST, syslog, SNMP and of course
the web interface for this service.
The MileGate generates notification on a change of the configuration. Those
notifications need to be captured by our service and as a consequence, the
new navigation must be generated. This needs to be considered at the con-
ception of the navigation structure.
If a new unit is added or removed, the node needs to be added in the naviga-
tion menu and of course also deleted. In this case, a similar mechanism as the
one described in the under “Operation of the HTML service” has to be per-
formed starting at the added unit instead of the root node.

3.2.4.4 Problems

Additional to the identification of the problems in the point “Feasibility studies”
we list here some very important points for the implementation of the service.

Error Handling:
To announce errors to the user, we can just use the output of the HTML page.
It is possible to generate error pages or to add the error message at any place
of the page. We need to define what will be shown during the generation pro-
cess to give the best feedback to the user.

Concurrent Problems:
The handling of concurrent access need to be checked to guarantee the func-
tionality. In some cases, the access or the files have to be locked for second-
ary users.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 39 of 117

Refresh Problems:
Automatic refresh of the HTML page with a refresh delay could cause some
problems. We also have to pay attention that the caching mechanism of the
browser/website is configured well. We need a very quick refresh time to not
confuse/irritate the user.

Performance Problems:
We saw in the analysis that the embedded system has some limitations such
as the performance. To avoid performance problems, proper testing is neces-
sary.

3.2.5 Conclusion

A service which generates HTML pages on the MileGate is feasible.
The aim (advantage compared to MCST) and the wanted functions of such a
service need to be planed and analysed carefully. Main advantage is that a cli-
ent does not need to install anything. It is also imaginable that browsers on
mobile devices can be used for configuration or supervision.
At our point of view, a customizable user interface or a change of the look-
and-feel could bring some advantages for the use of the interface.
The required time to realize this project is very difficult to estimate at the ac-
tual state because it depends heavily on the desired functionalities.
The survey of the actual management tool (MCST) and its implementation
helped a lot and completed the introduction into the very complex MileGate
system. We feel certain that this analysis will facilitate future tasks and helps
if such a service will be designed.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 40 of 117

4 W3C Web Service Description

Abstract

This chapter introduces the Web Service Description Language WSDL and its
structure. The structure is showed by means of abstracts of the final Web Service
Description for the MileGate interface.

For a better understanding, the link between the WSDL and the exchanged SOAP
message has been added.

The complete description of the Web Service (WSDL file) can be found as
annexe:WSDL. The modified parts are highlighted and resumed in the chapter
“7.3 WSDL File generation”.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 41 of 117

4.1 Introduction

WSDL is an XML language for describing Web Service interfaces. The language
is standardized by the W3C.
The specification of the version 1.1 exists since 2001. The follower version
(2.0) reached the status of a 'W3C Recommendation' in march 2006 but most
of the current Web Services still use the previous version.

The description of such a service is spit into two parties, we have an abstract
and a concrete description. The abstract view focuses the functionality and the
concrete enters more into the technical detail. Thus we have a separation
between the details and the manner our service is offered.

The components of the description are:

Abstract: Operation
Messages Exchange Pattern
Interface

Concrete: Binding
Endpoint
Service

The main difference of WSDL according to other description languages for in-
terfaces (e.g. IDL, Interface Description Language) is that everything is con-
centrated in one file. We are able to communicate with the service just on the
base of the WSDL file. Of course we have also the possibility to write the de-
scription modular (include, import) to provide better legibility and maintainab-
ility.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 42 of 117

4.2 Structure of the description

We want to introduce briefly the elements used to describe the Web Service
and show afterwards a few more details using the description of our interface.
If two elements are used to describe one single element, this is due to the dif-
ferent versions of WSDL. The first element belongs to the version 1.1 and the
second to the standard 2.0.

definitions / description (root element)
This XML element represents the root element of the WSDL file and defines
the different name spaces.

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="mob_mainbase"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:mob_mainbase_xml="http://keymile.com/milegate/ws/mob_mainbase_xml"
 xmlns:soapbind="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:wsman="http://schemas.xmlsoap.org/ws/2005/06/management"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
 targetNamespace="http://www.keymile.com/milegate/ws/mob_mainbase_xml">
Code 23: WSDL definitions

documentation
The section documentation contains a textual annotation to the service.

 <documentation>
 -textual description of Web Service
 -further infos for the use of this service or interface
 -contact person
 </documentation>
Code 24: WSDL documentation

types
Defines the usable data types.

<types>
 <xs:schema
 xmlns="http://www.keymile.com/milegate/ws/mob_mainbase_xml"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:_0="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 targetNamespace="http://www.keymile.com/milegate/ws/mob_mainbase_xml">
 ...
 <xs:element name="Label" type="Label__Type"/>
 <xs:complexType name="Label__Type">
 <xs:sequence>

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 43 of 117

 <xs:element name="user">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="63"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="service">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="63"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="description">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="127"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="severity" type="severity__Type"/>
 <xs:simpleType name="severity__Type">
 <xs:restriction base="xs:string">
 <xs:enumeration value="notification"/>
 <xs:enumeration value="cleared"/>
 <xs:enumeration value="indeterminate"/>
 <xs:enumeration value="warning"/>
 <xs:enumeration value="minor"/>
 <xs:enumeration value="major"/>
 <xs:enumeration value="critical"/>
 </xs:restriction>
 </xs:simpleType>
 ...
Code 25: WSDL types

message
This element contains the possible messages and the types which are allowed
to use.

 <!-- WS-Management headers -->
 <message name="ResourceURIMessage">
 <part name="Header" element="wsman:ResourceURI"/>
 </message>
 <message name="SelectorSetMessage">
 <part name="Header" element="wsman:SelectorSet"/>
 </message>

 <!-- WS-Addressing headers -->
 <message name="ToMessage">

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 44 of 117

XMLSchema base data types

 <part name="Header" element="wsa:To"/>
 </message>
 <message name="ReplyToMessage">
 <part name="Header" element="wsa:ReplyTo"/>
 </message>
 <message name="ActionMessage">
 <part name="Header" element="wsa:Action"/>
 </message>
 <message name="MessageIDMessage">
 <part name="Header" element="wsa:MessageID"/>
 </message>

 <!-- bodys -->
 <!-- FAULT MESSAGE -->
 <message name="errorMessage">
 <part name="Error" element="mob_mainbase_xml:Fault"/>
 </message>
 ...
 <message name="Discover__Message">
 <part name="Body" element="mob_mainbase_xml:Discover"/>
 </message>
 ...
 <message name="Label__Message">
 <part name="Body" element="mob_mainbase_xml:Label"/>
 </message>
 ...
Code 26: WSDL message

port type / interface
Describes the interfaces and the provided operations on this interface. For
each operation the corresponding input and output messages are listed.

 <portType name="main_base__PortType">
 <!-- MAINBASE PORT TYPES -->
 <operation name="GetLabel__Operation">
 <input message="mob_mainbase_xml:EmptyMessage"/>
 <output message="mob_mainbase_xml:Label__Message"/>
 <fault name="Fault" message="mob_mainbase_xml:errorMessage"/>
 </operation>
 <operation name="SetLabel__Operation">
 <input message="mob_mainbase_xml:Label__Message"/>
 <output message="mob_mainbase_xml:Label__Message"/>
 <fault name="Fault" message="mob_mainbase_xml:errorMessage"/>
 </operation>
 <operation name="GetAlarmSeverity__Operation">
 <input message="mob_mainbase_xml:EmptyMessage"/>
 <output message="mob_mainbase_xml:AlarmSeverity__Message"/>
 <fault name="Fault" message="mob_mainbase_xml:errorMessage"/>
 </operation>
 ...
 <operation name="GetDiscover__Operation">

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 45 of 117

Reference to data type (TYPES)

The input message
(view of Service)

doesn't have any body!

 <input message="mob_mainbase_xml:EmptyMessage"/>
 <output message="mob_mainbase_xml:Discover__Message"/>
 <fault name="Fault" message="mob_mainbase_xml:errorMessage"/>
 </operation>
 ...
Code 27: WSDL portType

binding
With the element binding we declare which transport protocol is used for
which interface. For inputs or outputs of operations we need to assign the
messages to the elements of the transport protocol (for the example SOAP,
this will be SOAP:body or SOAP:header)

 <binding name="main_base__Interface"
type="mob_mainbase_xml:main_base__PortType">

 <soapbind:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

 <!-- MAINBASE BINDING -->
 <operation name="GetLabel__Operation">
 <soapbind:operation

soapAction="http://schemas.xmlsoap.org/ws/2004/09/transfer/Get"/>
 <input>
 <soapbind:header message="mob_mainbase_xml:ResourceURIMessage"

part="Header" use="literal" />
 <soapbind:header message="mob_mainbase_xml:SelectorSetMessage"

part="Header" use="literal" />
 <soapbind:header message="mob_mainbase_xml:ToMessage" part="Head

er" use="literal" />
 <soapbind:header message="mob_mainbase_xml:ReplyToMessage"

part="Header" use="literal" />
 <soapbind:header message="mob_mainbase_xml:ActionMessage"

part="Header" use="literal" />
 <soapbind:header message="mob_mainbase_xml:MessageIDMessage"

part="Header" use="literal" />
 <soapbind:body use="literal"/>
 </input>
 <output>
 <soapbind:header message="mob_mainbase_xml:ResourceURIMessage"

part="Header" use="literal">
 </soapbind:header>
 <soapbind:header message="mob_mainbase_xml:SelectorSetMessage"

part="Header" use="literal" />
 <soapbind:header message="mob_mainbase_xml:ToMessage" part="Head

er" use="literal" />
 <soapbind:header message="mob_mainbase_xml:ReplyToMessage"

part="Header" use="literal" />
 <soapbind:header message="mob_mainbase_xml:ActionMessage"

part="Header" use="literal" />
 <soapbind:header message="MessageIDMessage" part="Header"

use="literal" />
 <soapbind:body use="literal"/>
 </output>
<fault name="Fault">
 <soapbind:fault use="literal" name="Fault" />
</fault>

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 46 of 117

Each operation has its
SOAP header and body

Each operation has its
transfer function (soapAction)

Definition of SOAP transport
protocol and style

 </operation>
 <operation name="SetLabel__Operation">
 <soapbind:operation

soapAction="http://schemas.xmlsoap.org/ws/2004/09/transfer/Set"/>
 <input>
 <soapbind:header message="mob_mainbase_xml:ResourceURIMessage"

part="Header" use="literal" />
 <soapbind:header message="mob_mainbase_xml:SelectorSetMessage"

part="Header" use="literal" />
 <soapbind:header message="mob_mainbase_xml:ToMessage" part="Head

er" use="literal" />
 <soapbind:header message="mob_mainbase_xml:ReplyToMessage"

part="Header" use="literal" />
 <soapbind:header message="mob_mainbase_xml:ActionMessage"

part="Header" use="literal" />
 <soapbind:header message="mob_mainbase_xml:MessageIDMessage"

part="Header" use="literal" />
 <soapbind:body use="literal"/>
 </input>
 <output>
 <soapbind:body use="literal"/>
 </output>
 <fault name="Fault">
 <soapbind:fault use="literal" name="Fault" />
 </fault>
 </operation>
Code 28: WSDL binding

service
Describes where the service is located. 'Services' can be subdivided into 'port/
endpoint' with different addressing parameters. See next paragraph for de-
scription of parameters.

 <service name="SetLabelService">
 <port name="SetLabelPort"

binding="mob_mainbase_xml:main_base__Interface">
 <soapbind:address location="http://localhost:9357/wsman/"/>
 <wsa:EndpointReference name="labelEPR"
 xmlns:wsaw="http://www.w3.org/2006/02/addressing/wsdl">
 <wsa:Address>http://localhost:9357/wsman/</wsa:Address>
 <wsa:ReferenceParameters>
 <wsman:SelectorSet>
 <wsman:Selector name="mf">main</wsman:Selector>
 <wsman:Selector name="property">/Label</wsman:Selector>
 </wsman:SelectorSet>
 <wsman:ResourceURI>/unit-11</wsman:ResourceURI>
 </wsa:ReferenceParameters>
 </wsa:EndpointReference>
Code 29: WSDL service

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 47 of 117

Definition of Service Endpointwith
the addressing parameters

No need for interpretation.Passes to
application as a full XML

4.3 SOAP Message

The SOAP message defined in the Web Service Description File helps a lot to
understand the description.
We are going to represent the SOAP messages for the Set- and GetLabel oper-
ation.

GetLabel SOAP message:

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:mob="http://www.keymile.com/milegate/ws/mob_mainbase_xml"
 xmlns:wsa ="http://schemas.xmlsoap.org/ws/2004/08/addressing"
 xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd">
 <soapenv:Header>
 <wsa:To>http://localhost:9357/man</wsa:To>
 <wsman:ResourceURI>/unit-11</wsman:ResourceURI>
 <wsa:ReplyTo>
 <wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/

role/anonymous</wsa:Address>
 </wsa:ReplyTo>
 <wsman:SelectorSet>
 <wsman:Selector Name="mf">main</wsman:Selector>
 <wsman:Selector Name="property">/Label</wsman:Selector>
 </wsman:SelectorSet>
 <wsa:Action>http://schemas.xmlsoap.org/ws/2004/09/transfer/Get
 </wsa:Action>
 <wsa:MessageID>urn:uuid:d2345623-bc89-4323-9e83-ueldjfued
 </wsa:MessageID>
 </soapenv:Header>
 <soapenv:Body>
 </soapenv:Body>
</soapenv:Envelope>
Code 30: SOAP GetLabel

The input type (view of service) of the GetLabel message (defined in Port-
Types):

<input message="mgws:EmptyMessage"/> <!-- NO BODY -->

SetLabel SOAP message:

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:mob="http://www.keymile.com/milegate/ws/mob_mainbase_xml"
 xmlns:wsa ="http://schemas.xmlsoap.org/ws/2004/08/addressing"
 xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd">
 <soapenv:Header>
 <wsa:To>http://localhost:9357/man</wsa:To>

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 48 of 117

Addresse

Ressource

Property

Action: Get

 <wsman:ResourceURI>/unit-11</wsman:ResourceURI>
 <wsa:ReplyTo>
 <wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/

role/anonymous</wsa:Address>
 </wsa:ReplyTo>
 <wsman:SelectorSet>
 <wsman:Selector Name="mf">main</wsman:Selector>
 <wsman:Selector Name="property">/Label</wsman:Selector>
 </wsman:SelectorSet>
 <wsa:Action>http://schemas.xmlsoap.org/ws/2004/09/transfer/Put
 </wsa:Action>
 <wsa:MessageID>urn:uuid:d2345623-bc89-4323-9e83-ueldjfued
 </wsa:MessageID>
 </soapenv:Header>
 <soapenv:Body>
 <mob:Label>
 <mob:user>a</mob:user>
 <mob:service>b</mob:service>
 <mob:description>c</mob:description>
 </mob:Label>
 </soapenv:Body>
</soapenv:Envelope>
Code 31: SOAP SetLabel

The input type (view of service) of the SetLabel message (defined in Port-
Types):

<input message="mob_mainbase_xml:Label__Message"/>

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 49 of 117

The SetLabel has a
body of the typ
'Label__Type'

as input message

Action: Put

5 Web Service Concepts

Abstract

There is a huge variety of concepts and standards for Web Services. Concepts
are provided by the World Wide Web Consortium W3C8, OASIS9, Microsoft10,
IBM11 and even more. Some of this concepts overlap.

This chapter discusses the used concepts for our Web Service and provides an
selection of other concepts which has been defined during this project as interest-
ing for the future development of the MileGate Web Service.

Most of these concepts had not been included in the actual Web Service Descrip-
tion (WSDL) for reasons of time constraints. For these concepts interesting points
for KEYMILE are emphasized and commented.

8http://www.w3.org/2002/ws/
9http://www.oasis-open.org/specs/
10http://msdn.microsoft.com/en-us/library/ms951274.aspx
11http://www.ibm.com/developerworks/webservices/standards/

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 50 of 117

http://www.ibm.com/developerworks/webservices/standards/
http://msdn.microsoft.com/en-us/library/ms951274.aspx
http://www.oasis-open.org/specs/
http://www.w3.org/2002/ws/

5.1 Addressing

The W3C recommendation Web Service Addressing 1.0 – Core12 of the 9 May
2006 defines the construct of the message addressing properties and the end-
point references.
Other recommendation describes the Web Service Addressing 1.0 – SOAP
Binding13 (9 May 2006), the Web Service Addressing 1.0 – Metadata14 (4
September 2007) and the candidate recommendation Web Service Addressing
1.0 – WSDL Binding15 (29 May 2006).

5.1.1 WS-Addressing

This recommendation provides a mechanisms for end-to-end addressing of
messages independent of the transport protocol used.
Addressing properties are, with the use of SOAP, contained in the header
block.

The use of WS-Addressing allows us to address the source and destination en-
dpoint of the system and to provide a identity for the message. Additional we
specifies an action URI which defines the expected semantics.

With the concept of SOAP binding we assign the exchange structure defined by
SOAP and a set of predefined faults.

The WSDL Metadata and WSDL binding indicate if the service is using WS-Ad-
dressing and provides the possibility for different message exchange patterns
such as one-way, request-response, notification and solicit-response for WSDL
1.1 and some more for WSDL 2.0.

5.1.1.1 Endpoint Reference EPR

Endpoint Reference is a concept introduced by WS-Addressing and is used for
the dynamic generation and customization of service endpoints.
As we have in our system endpoints that can change with the modification of
the configuration or with the insertion of new hardware, we need a mechanism
to indicate the new endpoint.

12http://www.w3.org/TR/ws-addr-core/
13http://www.w3.org/TR/ws-addr-soap/
14http://www.w3.org/TR/ws-addr-metadata/
15http://www.w3.org/TR/ws-addr-wsdl/

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 51 of 117

http://www.w3.org/TR/ws-addr-wsdl/
http://www.w3.org/TR/ws-addr-metadata/
http://www.w3.org/TR/ws-addr-soap/
http://www.w3.org/TR/ws-addr-core/

Possibilities are an additional Web Service (Endpoint Manager) which provides
information about the addressable endpoints. Such a Web Service is described
on the apache website
(http://svn.apache.org/repos/asf/cxf/trunk/testutils/src/main/resources/wsdl/locat-
or.wsdl).
Other approaches are described later in the chapter 'WS-Distributed Manage-
ment' under 'Advertisement' and 'Discovery'.

5.1.2 WS-Management

The final specification WS-Management was published by the Distributed Man-
agement Task Force DMTF the 02 December 2008. It provides a common way
for systems to access and exchange management information.

The default addressing model uses a representation of an EPR that is a tuple
of the following SOAP headers:16

• wsa:To (required): the transport address of the service
• wsman:ResourceURI (required if the default addressing model is

used): the URI of the resource class representation or instance represent-
ation

• wsman:SelectorSet (optional): identifies or "selects" the resource in-
stance to be accessed if more than one instance of a resource class exists

The ResourceURI is in our case used to address the Managed Object (e.g.
/unit-11) and the SelectorSet specifies the management function (mf, e.g.
Main) and the property (e.g. Label).

16http://www.dmtf.org/standards/published_documents/DSP0226_1.0.0.pdf (5.1.2 Default Addressing Model)

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 52 of 117

http://www.dmtf.org/standards/published_documents/DSP0226_1.0.0.pdf
http://svn.apache.org/repos/asf/cxf/trunk/testutils/src/main/resources/wsdl/locator.wsdl
http://svn.apache.org/repos/asf/cxf/trunk/testutils/src/main/resources/wsdl/locator.wsdl

5.1.3 WS-Transfer

WS-Management has the status of W3C Member Submission (27 September
2006). The latest working draft is dated the 25 June 2009.

We use just the defined resource operations (which provides the synchronous
message exchange we need) such as get and put with the URI:

http://schemas.xmlsoap.org/ws/2004/09/transfer/Get
http://schemas.xmlsoap.org/ws/2004/09/transfer/Put

REMARK: In the latest working draft the URI changed to:

http://www.w3.org/2009/06/ws-tra/Get
http://www.w3.org/2009/06/ws-tra/Put

Additionally the resource operations delete and create are possible.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 53 of 117

http://www.w3.org/2009/06/ws-tra/Put
http://www.w3.org/2009/06/ws-tra/Get
http://schemas.xmlsoap.org/ws/2004/09/transfer/Put
http://schemas.xmlsoap.org/ws/2004/09/transfer/Get

5.2 Resource

The concepts in this chapter describe the handling of resources with Web Ser-
vices. Following specifications are published by OASIS, please pay attention on
the status of the recommendation which is indicated at the beginning of each
description.

5.2.1 WS-Discovery

WS-Discovery is not standardized yet and has the state of an OASIS Commit-
tee Specification 01 since 14 May 2009.17

It defines a discovery protocol to locate services. It is often used to discover
structures like LDAP (Lightweight Directory Access Protocol) or similar direct-
ories.

As our system contains one single service per MileGate, we have no need of a
discovery at this level. Discovery could be used to figure out the complete in-
frastructure (ensemble of MileGates). Actually, this function is not needed be-
cause the system architecture and its addressing is designed in advance and
won't change over the time.

CAN'T BE USED TO DISCOVER THE MANAGED OBJECTS (RESOURCE) OF THE
MILEGATE!

5.2.2 WS-Resource

WS-Resource became a OASIS Standard the 1 April 2006.

The goal of WS-Resource is to standardize the terminology and concepts
needed to express the relationship between Web services and resources.18

17http://docs.oasis-open.org/ws-dd/discovery/1.1/wsdd-discovery-1.1-spec.pdf
18http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf (1.1 Goals and Requirements)

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 54 of 117

http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-dd/discovery/1.1/wsdd-discovery-1.1-spec.pdf

A resource is represented by an endpoint reference (EPR) and addressed using
the WS-Addressing concept:

<wsa:EndpointReference>
 <wsa:Address>http://192.168.0.1?res=RessourceName</wsa:Address>
 …
</wsa:EndpointReference>

Code 32: WS-Ressource

The SOAP binding would look as followed:

<wsa:To>http://192.168.0.1?res=RessourceName</wsa:To>

Code 33: WS-Ressource SOAP binding

5.2.2.1 WS-Resource Properties19

WS-Resource Properties also became a OASIS Standard the 1 April 2006.

The goal of WS-ResourceProperties is to standardize the terminology, con-
cepts, operations, WSDL and XML needed to express the resource properties
projection, its association with the Web service interface, and the messages
defining the query and update capability against the properties of a WS-Re-
source.

Resource Property:
A resource property is a piece of information defined as part of the state mod-
el of a WS-Resource.

Resource Properties Document:
The XML document representing a logical composition of resource property
elements. The resource properties document defines a particular view or pro-
jection of the state data implemented by the WS-Resource.

5.2.2.2 Comment

This concepts offer another manner for addressing the MILEGATE property
(e.g. Label) and its parameters (e.g. Label1).

• With GetMultipleResourceProperties we can get a selection of Resource
Properties. This mechanism offers the possibility of a customized request

19http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf (1.1 and 2)

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 55 of 117

http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf

according to the preferences of the client. The advantage is that we do not
have to request multiple operations and filter the content afterwards.

• With QueryResourceProperties we are able to query a Resource Properties
document of a WS-Resource using a query expression such as XPath.

• The manageability of the system could be improved due to the dynamic
add/delete of Resource Properties into the Resource Property document.
(InsertResourceProperties, UpdateResourceProperties, DeleteResource-
Properties)

DOES NOT HELP TO FIGURE OUT WHICH ENDPOINT IS SUPPORTED BY WHICH
OPERATION!

5.2.3 WS-Notification

WS-Notification contains the standard WS-Base Notification, WS-Brokered No-
tification and WS-Topics.

5.2.3.1 WS-Base Notification

WS-Base Notification became a OASIS Standard the 1 October 2006.

The goal of WS-BaseNotification is to standardize the terminology, concepts,
operations, WSDL and XML needed to express the basic roles involved in Web
services publish and subscribe for notification message exchange.20

A notify message containing one or more notifications should look as fol-
lowed:21

…
<wsnt:Notify>
 <wsnt:NotificationMessage>
 <wsnt:SubscriptionReference>
 wsa:EndpointReferenceType
 </wsnt:SubscriptionReference> ?
 <wsnt:Topic Dialect="xsd:anyURI">
 {any} ?
 </wsnt:Topic>?
 <wsnt:ProducerReference>
 wsa:EndpointReferenceType

20http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf (1.1 Goals and Requirements)
21http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf (3.2 Notify)

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 56 of 117

http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf

 </wsnt:ProducerReference> ?
 <wsnt:Message>
 {any}
 </wsnt:Message>
 </wsnt:NotificationMessage> +
 {any} *
</wsnt:Notify>
…

Code 34: WS-Base Notification

The notify message just before is transported as content of the SOAP body.
Addressing for the notification (in SOAP header) by definition is following WS-
Addressing action.

 <wsa:Action>
 http://docs.oasis-open.org/wsn/bw-2/NotificationConsumer/Notify
</wsa:Action>

Code 35: Notification action

The concept for the management of the subscription is also defined in WS-
Base Notification.

5.2.3.2 WS-Brokered Notification

WS-Topics became a OASIS Standard the 1 October 2006.

The goal of WS-BrokeredNotification is to standardize message exchanges in-
volved in Web services publish and subscribe of a message broker.22

5.2.3.3 WS-Topics

WS-Topics became a OASIS Standard the 1 October 2006.

The goal of the WS-Topics specification is to define a mechanism to organize
and categorize items of interest for subscription known as “topics”. It defines
a set of topic expression dialects that can be used as subscription expressions
in subscribe request messages and other parts of the WS-Notification sys-
tem.23

22http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf (1.1 Goals and Requirements)
23http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf (1.1 Goals and Requirements)

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 57 of 117

http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf

Topic:
A Topic is the concept used to categorize Notifications and their related Noti-
fication schemas.

Topic Tree:
A hierarchical grouping of Topics.

5.2.3.4 Comment

The mechanism described in this standards is basically similar to the notifica-
tion system used in the MileGate. The requirement for the notifications used
for the logbook could be fulfilled with this technique without the need for a
continuous polling. (Pull-style notifications also possible)
Information in the logbook subcategories alarm, configuration changes, ses-
sion login, equipment changes and events can be made accessible in a more
particular way for other purposes.
It is recommended to allow authorization policies for topics.

• The hierarchical structure of the topics allows a very targeted subscription
for notifications.

• Management of the topics stays handy, also for large topic sets.
• The client can regroup the readout of notification according to his belong-

ings and anywhere in his system.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 58 of 117

5.3 Management

We already saw the WS-Management specification in the chapter Addressing.
The idea behind this separation is that we just used WS-Management for ad-
dressing purposes.
In this chapter we describe functionality that goes much further. A complex
concept is represented which interconnects multiple standards described be-
fore.

5.3.1 WS-Distributed Management

The standard WS-Distributed Management contains two parties.
Management using Web Services (MUWS 1.0) became a OASIS Standard the 9
March 2005 and Management of Web Services (MOWS 1.0) on 1 August 2006.
We will discuss here just the first standard. The second standard (MOWS 1.0)
will be more interesting for the implementation of the management interface
and not for the definition of the interface.

5.3.1.1 Management Using Web Services

The following paragraph defines some necessary terminology defined in the
MUWS specification.

Manageable resource:
A resource capable of supporting one or more standard manageability capabil-
ities.

Capability:
A group of properties, operations, events and metadata, associated with iden-
tifiable semantics and information and exhibiting specific behaviors.

Manageability capability:
A capability associated with one or more management domains.

Manageability endpoint:
A Web service endpoint associated with and providing access to a manageable
resource.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 59 of 117

Management domain:
An area of knowledge relative to providing control over, and information
about, the behavior, health, lifecycle, etc. of manageable resources.

Management Using Web Services (MUWS) enables management of distributed
information technology (IT) resources using Web services. Many distributed IT
resources use different management interfaces. By leveraging Web service
technology, MUWS enables easier and more efficient management of IT re-
sources.24

MUWS is based on number of other specifications such as WS-Addressing,
Metadata, Endpoint Reference, WS-Notification, WS-Topics, WS-Discovery,
WS-Resource Properties which have been introduced before.

Manageability capabilities

The following capabilities are summarized from the documents MUWS part 125

(Chapter 3) & 226 (Chapter 2 and 3) mentioned as reference. The capabilities
describe how the service can be used.

Operations
The operations in the MUWS specification correspond to those used in WSDL
(portType element containing operation element with a description and any
relevant metadata).

Properties
The properties of a manageable resource use the mechanism defined in WS-
Resource Properties and its resource properties document.

Events
Event types are defined by using 'topic' and 'message content' elements. The
information in the second element is transmitted as a part of the notification
message (defined by WS-Base Notification).
To support event classification, different SituationCategoryTypes (element)
such as AvailabilitySituation, CapabilitySituation, ConfigurationSituation and so
on were defined (full list on page 9 of MUWS part 2). The aim of this classifica-
tion is that the event consumer can comprehend the situation according the
ability of the event source.
For each capability, topics are defined to link the capability with the event.

24http://docs.oasis-open.org/wsdm/wsdm-muws1-1.1-spec-os-01.pdf (1 Introduction)
25http://docs.oasis-open.org/wsdm/wsdm-muws1-1.1-spec-os-01.pdf
26http://docs.oasis-open.org/wsdm/wsdm-muws2-1.1-spec-os-01.pdf

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 60 of 117

http://docs.oasis-open.org/wsdm/wsdm-muws2-1.1-spec-os-01.pdf
http://docs.oasis-open.org/wsdm/wsdm-muws1-1.1-spec-os-01.pdf
http://docs.oasis-open.org/wsdm/wsdm-muws1-1.1-spec-os-01.pdf

Metadata
We can define metadata on properties and operations. The aim of this is to
provide information available in WSDL and WS-Resource Properties to a tool or
management application.
With the metadata element 'ValidWhile', we are able to block the invocation of
an operation if certain properties do not have certain values.

Operational Status
With the capability operational status we have can simply represent if a re-
source is 'Available', 'PartiallyAvailable', 'Unavailable' or 'Unknown'.
This function can be implemented using the notification on property value
change provided by WS-Resource Properties.

Management -related capabilities

The function of a management-related capability is related to the management
of a resource, but it is not necessarily offered directly by a manageability end-
point of a resource. For example, the capability to help a manageability con-
sumer discover a new manageable resource can be provided by a registry in-
stead of by a management representation of the resource. As another ex-
ample, a manageable resource may provide information about relationships in
which it participates.

The following capabilities are summarized from the documents MUWS 2
(Chapter 4 and 5) mentioned as reference.

Relationships
The relationship defines the association between resources and the role of
each participant. Interesting point for the MileGate system is that we can
define a common AccessEndpoint for the participants of a relationship. A rela-
tionship may have its own properties, operations, events, lifecycles or can
provide information about the relationship.
Another good point is that with the definition of relationships we enable the
discovery of Endpoint References for other resource that participates in the re-
lationship.

Advertisement
This capability provides a mechanisms to notify the creation or destruction of
manageable resources. The following four new event topics are defined by Ad-
vertisement:

• ManageabilityEndpointCreation
• ManageableResourceCreation
• ManageabilityEndpointDestruction
• ManageableResourceDestruction

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 61 of 117

On the creation of a new Endpoint, the most interesting case for the MileGate
system, an associated 'CreationNotification' message (WS-Notification) deliv-
ers the new Endpoint Reference.

Discovery

The goal of discovery is to obtain the EPR of a manageability endpoint.27

The advertisement capability, just introduced before, provides one way to
provide a discovery mechanisms via events.
Another possibility is the discovery mechanisms via relationships described in
under 'Relationships'.

A last possibility, perhaps also interesting for the MileGate, is the discovery of
manageable resource by invoking a query on a registry. It is recommended to
use a registry of the type specified by the WS-Service Group28 specification.
Therefore MileGate should provide such a registry.

5.3.1.2 Comment

This specification defines how the different concepts can be combined together
and all the advantages from each of them can enhance the usability of the
complete system. We have plenty of good mechanisms for the dissolving of
the problems we get if we pass from a proprietary to a standardized solution
using Web Services.

It follows a short recapitulation of the advantages.

Resource Properties
• customized requests
• query resource properties using Xpath
• better manageability on changes of the resource properties

Notification/Topic
• similarity to actual notification system
• hierarchical structure of topics
• subscription

27http://docs.oasis-open.org/wsdm/wsdm-muws2-1.1-spec-os-01.pdf (5 Discovery)
28http://docs.oasis-open.org/wsrf/wsrf-ws_service_group-1.2-spec-os.pdf

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 62 of 117

http://docs.oasis-open.org/wsrf/wsrf-ws_service_group-1.2-spec-os.pdf
http://docs.oasis-open.org/wsdm/wsdm-muws2-1.1-spec-os-01.pdf

Metadata
• constraints for the invocation of operations
• machine readable

Operational status
• knowledge if resource is available

Relationships
• common AccessEndpoint in relationship
• discovery of Endpoint References in relationship

Advertisement
• discovery of Endpoint References with creation notifications

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 63 of 117

6 Web Service Tools

Abstract

In this chapter we will discuss about interoperability between web services and the
different validation tools recommended by the unavoidable organism.
We'll also talk about evaluated framework that can be used by the client to con-
sume the described service

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 64 of 117

6.1 Clients Tools

There are few available platforms to create web applications. In the past,
each application used its own specific protocol for service integration between
devices. For that reason, applications that used different platforms could not
communicate or shared data. This problem is called interoperability, which is
the ability to communicate and share data effectively and efficiently. The
awareness of those unfortunate limitations led to the standardization of data
structure and shared data; thus, the study of web services observed in this
project.
 The objective of this project is to emphasize to the best of our (my) abilities
the different aspects that could either prevent a good integration of web ser-
vices or represent an obstacle to reach efficient software and traditional ma-
terials. In fact, the idea is to produce an interactive « Milegate » capable of
understanding the service web standardized language that works with any cli-
ent device regardless of the web tools used by the device.

6.1.1 Interoperability between web services and SOAP protocol

Service web technologies such as protocol SOAP, WSDL Language and HTTP
protocol are currently used to transfer messages between machines. Those
messages vary in complexity. It ranges from the type of methodology to the
submission of an order. A common function – of higher level – of web service
requires the implementation of RPC communication type (Remote Procedure
Call, a long distance procedure call that allows a computer to run a program
on another computer.

For the rest of the paper, we will focus on a list of practical and frequently
asked questions concerning interoperability ; mainly questions that relate to
RPC communication type using protocol SOAP.

It is important to remember that interoperability problems are not often linked
to SOAP itself because it is « normalized »; on the contrary, it is linked to
transport and core protocol XML used.

Therefore, we have the following problems:

• Transport (HTTP, SMTP, FTP)
• Core XML
• Partial implementation or confusing integration of SOAP specification

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 65 of 117

6.1.1.1 Transport problem

The transport used for web services is very important. HTTP represents the
most popular transport for RPC calls via SOAP. Additionally, the embedded
server that we will use for the prototype is HTTP based. This means that a re-
liable interoperability must exist between HTTP and SOAP.

A simple but widely popular example of HTTP interoperability problem relates
to the usage of « SOAPAction » under SOAP 1.1. The SOAP 1.1 specification
says this about the HTTP SOAPAction header:

The SOAPAction HTTP request header field can be used to indicate the
intent of the SOAP HTTP request. The value is a URI identifying the in-
tent. SOAP places no restrictions on the format or specificity of the URI
or that it is resolvable. An HTTP client MUST use this header field when
issuing a SOAP HTTP Request.

The presence and content of the SOAPAction header field can be used by serv-
ers such as firewalls to appropriately filter SOAP request messages in HTTP.
The header field value of empty string ("") means that the intent of the SOAP
message is provided by the HTTP Request-URI. No value means that there is
no indication of the intent of the message; ie the value of SOAPAction must be
in quotes, unless it is a ‘‘null’’ value!

The most often encountered problem is the following: if a server requires that
« SOAPAction » with ‘‘null’’ value, some clients will not be able to solve that
case because all API client HTTP cannot define headers a ‘‘null’’ value! In this
case, there are two possible solutions:

• Re-implement API clients (an actually difficult task)
• And/or make sure that none of the servers requires a

« SOAPAction » with a ‘‘null’’ value.

This problem is nonexistent under SOAP 1.2 because a new code HTTP (427)
was introduced and submitted to l’IANA to show the client that the server ap-
plication requires a « SOAPAction » replaced with an optional parameter « ac-
tion ».
See W3C/SOAP 1.2 specification for more details.

6.1.1.2 XML Problem

The second type of interoperability problems relates to XML analysis and the
management of XSD schemas. Basically, SOAP uses XML and XML schemas;
so its interoperability depends on both interoperabilities.
An interesting example of interoperability problem involving both XML analysis
and HTTP transports is the Byte Order Mark (BOM). When data is sent

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 66 of 117

through HTTP, it is possible to indicate the data encoding – such as UTF-16 or
UTF-8 – in the header Content-Type. It is also possible to state the coding of
a XML fragment by inserting a set of bytes. When UTF-16 is sent, BOM is ne-
cessary regardless of the presence of the encoding field “ Content-Type “ in
the header; but it is not the case with UTF-8.

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

n++<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="http://soapinterop.org/"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body soap:encodingStyle="http://schemas.xmlsoap.org/soap/en

coding/">
 <tns:echoStringResponse>
 <Return>string</Return>
 </tns:echoStringResponse>
 </soap:Body>
</soap:Envelope>

Code 36: XML problem

The first three characters are hexadecimals for “BOM UTF-8” , but as you can
see, Content-Type is part of. Some implementations send the BOM for UTF-8
even if they are not needed. Others cannot process XML with BOM. The solu-
tion is to send it only when necessary and to manage it correctly. In fact, it is
essential to well manage BOM for the processing of UTF-16 messages because
it is a requirement in this situation. There is no magic solution to solve that
problem. But once they are identified, it is better to use the exact specifica-
tions (generally available with W3C) that describe all standards and apply
them scrupulously.

6.1.1.3 SOAP protocol problem

It is easy to work with SOAP. It required messages to be placed in an envel-
ope with the content of the message included in an element of the body. Un-
fortunately, the inaccuracy of some specifications often represents the origin
of the problems. Thus, it is sometimes difficult to figure out the real outcome.
In other words, the diverse interpretation of the specifications yields to various
implementations.
SOAP actually suggests optional elements like headers and gives way to a vast
array of opportunities for body element constituents.
A usual problem linked to specification is the usage and interpretation of the
optional SOAP header. The attribute "mustUnderstand" with its value specifies
if the SOAP header is optional or compulsory. In the instance that the attribute

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 67 of 117

"mustUnderstand" defined as "1" or "True" depending on the SOAP version,
the receiver must recognize the information displayed in the header. A prob-
lem already exists in the recognition of the header and more importantly in its
processing to extract valued information. Another problem surfaces when this
header must go through several intermediary servers. In this instance, each
intermediary server removes what it needs and if necessary, adds more data
for the next server to use. This logical inference still not clarified by specifica-
tion is not yet implemented in API clients. It is now obvious the consequences
of such inaccuracy should a very important task need to be executed by the
last server
The list below represents a series of different interoperability problems. They
are research archives.

http://groups.yahoo.com/group/soapbuilders
http://www.mssoapinterop.org/
http://www.xmethods.net/ilab/

As a general rule, the only way to avoid these kind of problems among a nu-
merous cases if to make sure that the used API is big enough and that it has
been proven effective on the Web. However, such problems will remain re-
gardless of all efforts. The only known remedy is to conduct practical tests
once the application is written and the service is well defined.

For our project, we are susceptible to these major problems. Therefore, we
will follow these guidelines:

• Force to non null all optional attributes of SOAP header when necessary

• The encoding type will always be UTF-8 whether it is the declaration of
XML prologue or in the http header. There is no reason to refer to UTF-
16 since we are not dealing directly with objects.

• For this project, there is no processing between two Milegate commu-
nication. So, there is no need to worry about attribute "mustUnder-
stand" for SOAP 1.1.

6.1.2 Web Services Interoperability Organization (WS►I)

WS-I is an open industry organization chartered to establish and to document
Best Practices for Web services interoperability.
It provides a Profile and Testing tools that can be used by web service com-
munity to aid in developing and deploying interoperable Web services.

Web Services Interoperability Organization is actually an organism created in
2002 by Microsoft, IBM, BEA and Intel with the purpose of reaching common
specifications to all implementations of Web services. Today, there are more

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 68 of 117

http://www.xmethods.net/ilab/
http://www.mssoapinterop.org/
http://groups.yahoo.com/group/soapbuilders

than 130 members. It is recognized as the organization that governs and
makes decisions about Web services standard.

Its first purpose is to insure implementations interoperability. To achieve that
goal, it defined many profiles that each implementation must follow to be
compatible with another implementation carrying the same profile. These pro-
files are sets of specifications to be used, and they indicate how to interpret
these specifications.

6.1.2.1 WS-Profile description

Our research is based on the four most commonly used profiles

6.1.2.1.1 Basic Profile V1.1 (10 April 2006)

It is the base profile that every implementation must follow to adhere to the
rules of compatibility with other implementations. The other three profiles
depend on it.
The WS-I Basic Profile 1.1 provides interoperability guidance for basic SOAP
messaging for Web services using SOAP, WSDL, etc.....

ISO/IEC 29361:2008 defines the WS-I Basic Profile 1.1, consisting of a set of
non-proprietary Web services specifications, along with clarifications, refine-
ments, interpretations and amplifications of those specifications that promote
interoperability.
Due to its popularity, we will focus on the different constituents of that profile.
Four compulsory modules and one optional module made up basic profile.

Transport : this is a transport protocol HTTP used for communication.

Reprssentation : this is a SOAP 1.1 protocol that allows to describe transmit-
ted data.

Description : this is a descriptive language WSDL v1.0 that allows a (pro-
vider/supplier) to describe its exposed operations.

Discovery: this is a UDDI v2 protocol that allows to share services definitions.

Security (optional) : this is a HTTPS protocol that insure security during ac-
cess and communications. It is optional because it is possible to encrypt the
XML feed before it is included in HTTP.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 69 of 117

Illustration 37: modules of Basic Profile 1.1

6.1.2.1.2 Attachment Profile V1.0 (20 April 2006)

It is a profile that indicates the needed specifications to transmit large or bin-
ary data between components.
The Attachment Profile 1.0 complements the Basic Profile 1.1 to add support
for interoperable SOAP Messages with attachments-based Web services.
ISO/IEC 29362:2008 defines the WS-I Attachments Profile 1.0, consisting of a
set of non-proprietary Web services specifications, along with clarifications and
amendments to those specifications that are intended to promote interoperab-
ility. It complements the WS-I Basic Profile 1.1 (ISO/IEC 29361:2008) to add
support for interoperable SOAP Messages with Attachments-based Web ser-
vices.

6.1.2.1.3 Simple SOAP Binding Profile V1.0 (24 August 2004)

This profile describes how to transport messages with HTTP protocole. It is
very often used.
The Simple SOAP Binding Profile consists of those Basic Profile 1.0 require-
ments related to the serialization of the envelope and its representation in the
message.
ISO/IEC 29363:2008 defines the WS-I Simple SOAP Binding Profile 1.0, con-
sisting of a set of non-proprietary Web services specifications, along with clari-
fications and amendments to those specifications which promote interoperabil-
ity.

6.1.2.1.4 Basic Security Profile V1.0 (30 March 2007)

It is a profile that defines security mechanisms required during Web services
communications. There was no ISO specification found on this profile.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 70 of 117

6.1.3 Presentation of a few frameworks

Before evaluating different framework, A brief explanation of SOAP is neces-
sary.

6.1.3.1 What is SOAP?

SOAP (Simple Object Access Protocol) is a communication protocole between
web services based upon the exchange of XML messages. This light data ex-
change protocole does not require any programming model and can be used in
every communication style : synchronous or asynchronous, point to point or
point to multipoint.

The SOAP specification recommended by W3C is divided in four parts:

• The SOAP envelope that defines a message contexte, its destination, its
content and different options.

• The encoding SOAP rules defining data representation of an application
in the body of a SOAP message (in particular its structure).

• A protocol (RPC) defining a series of requests and responses.

• The definition of the transport layer (http, smtp...) to be used to trans-
port SOAP messages. It is usually referred to as SOAP message « en-
capsulation ».

The most recent version is v1.2 from April 27, 2007. However, many applica-
tions still use v1.1 of May 08, 2000, which is not a W3C recommendation but a
specification resulting from researches conducted by DevelopMentor, IBM, Mi-
crosoft and UserLand Software.

6.1.3.2 SOAP encoding and formatting rules

A SOAP message is nothing else than an XML document made of an envelope
that contains an optional header and a message body.

6.1.3.2.1 Encoding styles of SOAP messages

The specification defines two ways to format the XML messages within the
body of the SOAP envelop:

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 71 of 117

• Encoded to mean that SOAP encoding uses a set of rules based on the XML Schema
datatypes to encode the data, but the message doesn't conform to a particular
schema. The set of rules is defined by the attribute « encodingStyle »

• Literal means data must be conformed to an XML schema or XSD (which is spe-
cified in the WSDL file) on the data attribute « type » or « element ».

Type des messages SOAP
There are two ways to structure a SOAP message. In the early versions of
SOAP (before it was publicly published), SOAP was designed to support only
RPC style. By the time the SOAP 1.0 spec was published, it was expanded to
support both RPCs and unstructured messages (document).

• RPC style : All parameters are enveloped inside one named XML element. It
means that encoded data in XML format are stocked in the body of the SOAP mes-
sage before it is sent to the destination device. When using RPC style, the contents
of the SOAP Body must conform to a structure that indicates the method name and
contains a set of parameters. It looks like this:

<env:Body>
 <m:&methodName xmlns:m="someURI">
 <m:¶m1>...</m:¶m1>
 <m:¶m2>...</m:¶m2>
 ...
 </m:&methodName>
 </env:Body>
Code 38: SOAP RPC style

The response message has a similar structure containing the return value and
any output parameters

• Document Style: sometimes the data to be send are already in XML. The docu-
ment style is use in that case. Only the XSD rules can be used to encode or format
the data.
So when using Document style, you can structure the contents of the SOAP Body
any way you like.

Note: It is possible to do an “ACTION“ as a document or as a parameter in a
method called “ACTION“.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 72 of 117

DOCUMENT STYLE RPC STYLE

<env:Body> <env:Body>
 <m:actionToDo xmlns:m="someURI"> <m:action
xmlns:m="someURI">
 ... <m: actionToDo>
 </m: actionToDo> </m: actionToDo>
 </env:Body> </m: action>

 </env:Body>
Code 39: SOAP style comparison

The bigger difference is how to encode the message. In most circumstances,
literal encoding is used with Document style and SOAP encoding with RPC
style.
As it has been said above, literal encoding means that the Body contents con-
form to a specific XML Schema and SOAP encoding uses a set of rules based
on the XML Schema datatypes to encode the data, but the message doesn't
conform to a particular schema.
When using SOAP encoding, we would specify the element once and then ref-
erence the element as needed.
When using literal encoding, you would have to repeat this element each time
it's referenced. So obviously it sounds like a good idea to use SOAP encoding.
But, if we do, then we can't validate the message with an XML Schema, and
we can't transform the message using XSLT.

Furthermore, RPC is the easiest approach for developers because it just needs
the method name and the parameters of the remote object. Then SOAP RPC
calls the method of a remote object and gives all needed parameters. SOAP
layer serializes them within a XML stream, wrapped each stream in http or
SMTP and finally sends the obtained packages to the server.
So SOAP RPC takes care of encoding and decoding messages, even for com-
plex types and creates the SOAP proxy automatically.

In SOAP document type, SOAP layer sends a complete XML document to the
server and does not wait for a feedback. The message might contain any
type of XML data that can be slightly adapted to distant services. In docu-
ment mode (document style encoding), the developer controls everything,
from the choice of transport (HTTP, SMTP, etc....) to the serialization, inclu-
ding SOAP envelopes format.
Let us assume for a second that you are a developer and that you already
have data in XML format. SOAP RPC also authorizes a literal encoding of XML
data as a unique field. Since there is only one parameter – the tree XML that
represents data – the SOAP layer has only one value to serialize. The SOAP
layer also manages the transport, the "serialization/de-serialization" and the
generation of proxys.

For "Document" model, it is a message in XML format. For"RPC" model, input-
output arguments are encoded funtions under XML format.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 73 of 117

SOAP RPC
Encoding

Document Style
Encoding

RPC-Literal
Encoding

Easier for the
developer

Easier for
machine

Illustration 40: suitable encoding type

Although SOAP RPC is simple to implement, this approach hardly rises up and
does not perform well. Encoding SOAP RPC-literal requires more effort to the
developer to handle XML parsing, but seek the least SOAP layer. It is therefore
more difficult to implement, although it is more efficient and better care rises
over SOAP RPC encoding.

Why SOAP RPC is easier to implement for the developer?:
Because with this type of encryption there is just to define the methods that
will be part of the service. SOAP layer supports all the rest. In other words,
you do not have to manually parse the XML tree to find necessary items.

Why document style is easier to implement for the system?:
The great advantage is that we know not only the XML tree (structure) to
parse but we also have the opportunity to directly reach the data that interest
us, while a general layer SOAP should be parsed the entire tree.
That reduces the number of processing system.
This type of message is very important for embedded systems.

6.1.3.2.2 KEYMILE: Constraints and Needs

KEYMILE does not allow queries directly the MileGate internal system; that im-
plies we must necessarily go through the proprietary-XML provided. In addi-
tion the use of XML Schemas (present in the WSDL file) is essential here to
validate the messages.
The whole system is composed of embedded components, it is necessary to
consider the use of CPU resources.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 74 of 117

Illustration 41: KEYMILE Intern-
al System

6.1.3.2.3 Combination and Interoperability list

The different different combinations are :
• RPC / Encoded
• RPC / Literal
• Document / Encoded
• Document / Literal

Knowing that the association between Encoded style and Document model is
not implemented, and the norm WS-I Basic Profile 1.0 chose Literal as
standard instead of Encoded style, there are strong chances to recognize the
following SOAP formats :

• RPC / Literal
• Document / Literal

Illustration 42: Combina-
tion specification

Illustration 43: Reality
combination

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 75 of 117

5
Internal System

6.1.3.3 Framework fonctionnalities

Illustration 44: What client Side framework should be allowed

Summary explanation of the diagram above:

The client code (written in various languages available like Java, C / C + +,
Perl, Python, PHP ...) makes a service call by invoking the appropriate method
in the SOAP package. We can already have data (RPC call, action to do) in
XML format (1).

The SOAP package via SOAP serializer converts this invocation into a SOAP re-
quest and sends that to the HTTP encoder (2).
SOAP serialization converts (serializes) the public fields and properties of an
object, or the parameters and return values of methods, into an XML stream
that conforms to a specific XML Schema definition language (XSD) document.
SOAP serialization results in strongly typed classes with public properties and
fields that are converted to a serial format (in this case, XML) for storage or
transport.
As XML is an open standard, the XML stream can be processed by any applica-
tion, as needed, regardless of platform.

It is a simple powerful concept (Serialization & De-serialization), which allows
an object to retain its form even across a network.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 76 of 117

The HTTP encoder wraps the SOAP message in a HTTP request and sends it to
the SOAP server (3).
the SOAP server is simply an application server (appserver) running on the
MileGate.

The response is received from the SOAP server by the HTTP encoder/decoder
module(4) which decodes it and extracts the SOAP response which it hands to
the SOAP deserializer (5).

The SOAP deserializer deserializes the message and gives the result to the cli-
ent code (6) as the return value of the original invocation (1) or puts the re-
sponse in XML Document format.

6.1.4 Framework evaluation

During the frameworks survey, we tried to find per programming language at
least one framework that allows the use of web services. We chose these
frameworks according to their popularity and/or according to the different fea-
tures they offer.
The list below is not exhaustive and can be improved.

The following tools will be evaluated:

1. AXIS 2: It is a core engine for web services. It is one of the most pop-
ular frameworks of APACHE GROUP FOUNDATION. It allows to create
(server) and to consume web services. One of its advantages is the avail-
ability of services (implementation) in C/C++ or in Java. So most features
evaluated are available for AXIS2/JAVA and AXI2 / C.

2. CXF: is another APACHE GROUP FOUNDATION open source services
framework that builds and develops web services using front-end pro-
gramming APIs, like JAX-WS. It can only be used with java.

3. WSO2 Frameworks: WSO2 is an innovative Open Source technology
company devoted to in building Web services middleware. It focuses on
providing modular open middleware for SOA powered by APACHE. WSO2
contains components that include utilities, modules (that can be dropped
in to Apache Axis2/Java) and add-ons to other Apache Web Services pro-
jects.
WSO2 WSF (Web Service Framework) is the fully open source base frame-
work. All WSO2 products are built on it. WSF implementation is available
in C, C++, PHP, PERL, RUBY, PYTHON, JAVA, etc…

4. METRO: is an integrated stack that offers Web Services development
by using Java Technology APIs and tools powered by SUN JAVA. Metro

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 77 of 117

stack is part of Project Metro and as part of GlassFish project. The Metro
stack consists of JAX-WS, JAXB, and WSIT.

5. WCF: This is a unified programming model for Microsoft to generate
service-oriented applications. It’s based on .NET framework.
WCF applications can be developed using the different languages of Mi-
crosoft. NET applications such as Visual basic, C/C++, C#, java, etc…
While Microsoft is a board member of WS-I, it is not clear how many WS-I
profiles they are committing to completely support.

We briefly considered other frameworks such as:
• gSOAP(C++)
• NuSOAP,Pear SOAP (PHP)
• SOAP ::Lite (Perl)
• PySAOP (python)

They allow to generate web services using SOAP and WSDL specification ac-
cording to W3C. But most of them do not offer functionality as broad as
WSO2. It is for that reason that we did not report them.

6.1.4.1 What to evaluate?

We have defined here a list of features that will be evaluated in the different
frameworks. The features are:

• WS-Concepts

• Transport

• Encoding table

• Data binding

• General features

Important note: When a field is “NO” that means the evaluated field is not
supported. And when the field is empty it means we have not found on the of-
ficial website or projects associated any information about the evaluated field.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 78 of 117

http://java.sun.com/webservices/interop/
https://jaxb.dev.java.net/
https://jax-ws.dev.java.net/

WS-Concepts
There are several specifications linked/associated to Web Services WS-*.
Those specifications are in different levels of maturity, and are maintained by
different standards organizations (OASIS, W3C, DMTF…). Each specification
can be complemented or overlapped by another one or can even be in com-
petition with another specification.
The purpose of this part is not to study each concept, but to provide the differ-
ent concepts that can be supported by the various frameworks evaluated, and
to identify the important concepts to our project according to the shortlist
found.

WS-Concepts AXIS2 CXF WSO2
Frame-
works

METRO WCF

Addressing

Transfer
[A1]

NO NO±

Management NO * NO NO
Distribute
Management [A2]

NO NO

Notification
[A2]

NO NO

Atomic
Transaction [A3]

NO

Business
Activity [A3]

NO NO

Coordination
[A3]

NO

Eventing
[A4]

NO NO

Metadata
Exchange [A5]

NO

Reliable
Messaging [A6]

Security
[A7]

Table 45: WS-Concepts

 [A1] : It is possible to use it via xFer (as an add-on module for Apache Axis2) which is a com-
ponent of WSO2 Commons

[A2] : MUSE is an Apache project which is an implementation of the WS-ResourceFramework
(WSRF), WS-BaseNotification (WSN), and WS-DistributedManagement (WSDM) specifications. It
will be used as module.

[A3] : Kandula module implements WS-Coordination, WS-AtomicTransaction and WS-Business-
Activity protocols based on Apache Axis and Axis2.

[A4] : Savan/C is a C implementation of WS-Eventing specification. We did not find a module
for java…

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 79 of 117

http://wso2.org/projects/commons

Once the metadataExchange is engaged in Axis2, client can have the option to discover WSDL,
XML Schema, and Policy in case a specific reference is passed to a client.

[A6]: WS-RM is given by the module Sandesha (implementations for the Apache Web Services
project).

[A7]: Rampart is a module based on Apache WSS4J to provide WS-Security features. Apache
WSS4J is an implementation of the OASIS Web Services Security from OASIS Web Services Se-
curity TC (SecureConversation; SecurePolicy, Trust…).
 * :We did not find a module that is directly supported by axis2 but it is possible to bypass
this problem by declaring the parameters needed directly in the WS-addressing header. Unfor-
tunately the client must be known it to fix the problem. It will simply come down to pure guess.
 ± :It is not included in the available list presented on the official website. Nevertheless, the
site displays and conducts tests that emphasize that parameter with other frameworks. Further
research is needed.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 80 of 117

Transport
We evaluate here the different types of data transfer protocols or communica-
tion protocols supported by the frameworks in a client – server communica-
tion. There will not be any details regarding the evaluated protocols. A
simple and brief definition is available in the glossary and annex sections.

Transport AXIS2 CXF WSO2
Frame-
works

METRO WCF

HTTP/HTTPS

SMTP

POP3

FTP

TCP

JABBER Exp. NO
JMS

In-VM

Proxy Support*

Table 46: Transport

* : Proxy is not a communication protocol. We only need to know if the re-
quested SOAP included in any of those protocols can go through a server
proxy..
Exp = Experimental.

Encoding table
It proposes a short list of different encoding mechanism associated with XML
engine that can be supported by the evaluated framework.

Encoding Table AXIS2 CXF WSO2
Frame-
works

METRO WCF

XML Textual

MTOM

FastInfoset

JSON

Table 47: Encoding Table

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 81 of 117

Data binding
A list of few technologies for accessing XML by binding it to programming lan-
guage types.
The proposed list provides a convenient way to process XML content using
Java objects by binding its XML schema to Java representation.

Data Binding AXIS2 CXF WSO2 METRO WCF
XMLBeans

Castor

JiBX

JAXB

Table 48: Data Binding

General Features
This table contains a set of information with an overview of a framework.

General Features AXIS2 CXF WSO2 METRO WCF

BP 1.1 [1]

AP 1.0 [2]

SSBP 1.0 [3]

BSP 1.0 [4]

Open Source NO
Soap 1.1

Soap 1.2

WSDL 1.1

WSDL 2.0

WSDL -> code
server
WSDL -> code
Client
Eclipse Plugins NO
NetBeans
Plugins

NO NO NO

IDEA Plugins NO
Hot Deployment Axis2 Apache

build
tools

glassFish Visual
Studio

Table 49: General features

[1] : Basic profile Compliant
[2] : Attachment Profile Compliant
[3] : Simple SOAP Binding Profile Compliant
[4] : Basic Security Profile Compliant

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 82 of 117

6.1.4.2 Definitions

ADB:
short for Axis2 Data Binding Framework is probably the simplest method of generating
an Axis2 client. In most cases, all pertinent classes are created as inner classes of a
main stub class. ADB is very easy to use, but it does have limitations. It is not meant
to be a full schema binding application, and has difficulty with structures such as XML
Schema element extensions and restrictions.

Castor:
It is an open source-binding framework for moving data from XML to java program-
ming language objects and from java to databases.

CIM:
The Common Information Model is an open standard that defines how managed ele-
ments in an IT environment are represented as a common set of objects and the rela-
tionships between them. This is intended to allow consistent management of these
managed elements, independent of their manufacturer or provider.
The CIM standard is defined and published by the Distributed Management Task Force
(DMTF).
For more information see DMTF specifications.

FAST INFOSET:
It is a coding method of XML document into a binary data format developed by SUN
and adopted today as ISO standard. Its purpose is to decrease not only the size of
XML documents, but also the necessary resources for parsing document analysis.

JABBER:
short for JavaScript Object Notation, It is a lightweight data-interchange format very
easy for reading and writing by humans, but also easy for machines to parse and gen-
erate.
The JSON format is often used for serialization, transmitting structured data over a
network connection. Its main application is in Ajax web application programming,
where it serves as an alternative to the use of the XML format.

JAX-WS:
The Java API for XML Web Services is a Java programming language API for creating
web services. It is part of the Java EE platform from Sun Microsystems. Like the other
Java EE APIs, JAX-WS uses annotations introduced in Java SE 5 to simplify the devel-
opment and deployment of web service clients and endpoints.

JAXB:
Java Architecture for XML Binding (JAXB) allows Java developers to map Java classes
to XML representations. JAXB provides two main features: the ability to serialize Java
objects into XML and the inverse, i.e. to de-serialize XML back into Java objects. In
other words, JAXB allows to store and to retrieve data from memory in any XML format
without the need of implementing a specific set of XML loading and saving routines for
the program's class structure.

JiBX:
 It is a full data-binding framework that actually provides not only WSDL-to-Java con-
version, as covered in this document, but also Java-to-XML conversion. In some ways,
JiBX provides the best of both worlds. JiBX is extremely flexible, enabling you to
choose the classes that represent your entities, but it can be complicated to set up.

JSON:
short for JavaScript Object Notation, It is a lightweight data-interchange format very

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 83 of 117

easy for reading and writing by humans, but also easy for machines to parse and gen-
erate.
The JSON format is often used for serialization, transmitting structured data over a
network connection. Its main application is in Ajax web application programming,
where it serves as an alternative to the use of the XML format.

MTOM:
It is the W3C Message Transmission Optimization Mechanism, a method of efficiently
sending binary data to and from web services. For more details see the W3C specifica-
tion.

OASIS:
(Organization for the Advancement of Structured Information Standards) is a not-for-
profit consortium that drives the development, convergence and adoption of open
standards for the global information society. The consortium produces more Web ser-
vices standards than any other organization along with standards for security, e-busi-
ness, and standardization efforts in the public sector and for application-specific mar-
kets.

XML Textual:
In XML textual mode, it is possible to see and to modify XML document. A direct ac-
cess exists, and it is easy to index the document in comparison to XML binary mode.

XMLBeans:
Unlike ADB, XMLBeans is a fully functional schema compiler; so it doesn't carry the
same limitations as ADB. However, it is a little more complicated to use than ADB. It
generates a huge number of files; and the programming model, while certainly usable,
is not as straightforward as ADB.

WSIT:
Web Services Interoperability Technology is an open-source project started by Sun
Microsystems to develop the next-generation of web service technologies. It consists of
Java programming language APIs that allow developers to create web service clients
and services that interoperate between the Java platform and Microsoft's Windows
Communication Foundation (WCF) and .NET.

WSIT implements the following WS-Concepts:

Messaging Metadata Security Transaction

● WS-ReliableMessaging
● WS-RMPolicy

● WS-MetadataEx-
change
● WS-Transfer
● WS-Policy

● WS-Security
● WS-SecureConversa-
tion
● WS-Trust
● WS-SecurityPolicy

● WS-Coordination
● WS-AtomicTransaction

WCF: Short for Windows Communication Foundation.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 84 of 117

6.1.5 Tests tools

The WS-I offers two tools for interoperability which are real references. These
include: Monitor & Validator (Analyzer). These two tools are combined in the
Interoperability Testing Tools 1.1.
“Interoperability Testing Tools 1.1 is designed to help developers determine
whether their Web services are conformant with WS-I profile guideline.”29

6.1.5.1 Monitor

Monitor allows to capture the SOAP messages exchanged between a consumer
and producer services.
It behaves like a proxy server with in / out ports, and as the messages go
through it, the monitor completes a trace file.

Illustration 50: WS-Monitor

6.1.5.2 Validator

Validator generates a report of compliance of the WSDL contract and SOAP ex-
change message which are transmitted in regard of WS-I specifications Pro-
files. The compliance report is based to Basic Profile 1.1 and SSBP 1.0 and the
message log coming from Monitor sniffing.

29 http://www.ws-i.org/ H

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 85 of 117

http://www.ws-i.org/H
http://www.ws-i.org/H

Illustration 52: Interoperability Testing Tools 1.1

Illustration 51: WS-Validator

The following diagram shows a much more complete picture of interoperability
test tool 1.1

While WS-BP will ensure that we use the same levels of specifications, it must
still ensure that the types exchanged are well represented in each environ-
ment, in our case with the client. This involves a further problem of interoper-
ability which is the spread of data from one end to another.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 86 of 117

Indeed there are some types that are specific to a given framework such as
the DataSet of .Net, which has no equivalent in Java.

.Net ó W3C ó Java

Illustration 53: Exemple of exchange Scenario of simple type

Unfortunately, the time available will not allow us to study it.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 87 of 117

7 Realization of the Prototype

Abstract

This chapter describes the functionality of our prototype and describes the differ-
ent stages the information runs trough. One this stages, the generation of the
WSDL using an stylesheet transformation described more in detail and shows the
added value to the Web Service description.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 88 of 117

7.1 Flow of information

For the complete flow of information we have to remember the the Web Ser-
vice Illustration which shows a global view of the system. The different steps
are here described briefly.
Additional information can be found under the mentioned references.

Illustration 4 ”Approach with web service” from chapter 1 paragraph “Work to
perform”

7.1.1 SFD to WSDL

The description of the Web Service needs finally be generated automatically
from files called “SFD”. Those files are provided by the system and contain al-
most all the necessary information for our description.
The description (WSDL file) we provided, is written manually and considers
just one single interface. The complete system has more than hundred inter-
faces where the operations need to be accessible.
As the SFD file is written in XML, a transformation stylesheet (XSLT) will be
used. The transformation from SFD to the Accesspoint Definition File ADF per-
forms such a transformation and builds the basis for the transformation to
WSDL.

See section 7.2 for more information about the transformation.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 89 of 117

1

1

2 3 4

5

7.1.2 WSDL to Code & SOAP

The generation of the code is the job of the framework. Almost every conven-
tional programming language provides at least one framework.
With the import of the WSDL-file, the opera-
tions defined in the description were made ac-
cessible for the programmer.

Generation of the SOAP messages is depending
on the programming language but the skeleton
is provided in the description.

On the right hand side we can see the automat-
ically generated tree of the program SOAPui.
The interface (wsdl:portType) containing all the
operations (wsdl:operation) defined in the
WSDL file.
The SOAP request contains the defined mes-
sage elements of the selected operation as
header or body content.

7.1.3 HTTP Server

The task of the HTTP Server is to extract the SOAP message from the HTTP re-
quest and deliver it to the system. We see in the following code section the
SOAP message transported as a HTTP POST method. The SOAP message is
identical and just added as payload.

POST /wsman/ HTTP/1.1
Content-Type: application/soap+xml;charset=UTF-8;action="http://schem-
as.xmlsoap.org/ws/2004/09/transfer/Get"
User-Agent: Jakarta Commons-HttpClient/3.1
Host: localhost:9357
Content-Length: 1924

<!--

 GET LABEL

-->
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 90 of 117

Illustration 54: SOAPui stubs

2

3

 xmlns:mob="http://www.keymile.com/milegate/ws/mob_mainbase_xml"
 xmlns:wsa ="http://schemas.xmlsoap.org/ws/2004/08/addressing"
 xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd">
 <soapenv:Header>
 <wsa:To>http://192.168.32.171/wsman</wsa:To>
 <wsman:ResourceURI>/unit-11</wsman:ResourceURI>
 <wsa:ReplyTo>
 <wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/rol

e/anonymous</wsa:Address>
 </wsa:ReplyTo>
 <wsman:SelectorSet>
 <wsman:Selector Name="mf">main</wsman:Selector>
 <wsman:Selector Name="proerty">www.keymile.com/mg/2008/06/MoInfo

/Label</wsman:Selector>
 </wsman:SelectorSet>
 <wsa:Action>http://schemas.xmlsoap.org/ws/2004/09/transfer/Get
 </wsa:Action>
 <wsa:MessageID>urn:uuid:d2345623-bc89-4323-9e83-ueldjfued
 </wsa:MessageID>
 </soapenv:Header>
 <soapenv:Body/>
</soapenv:Envelope>
Code 55: Wireshark HTTP capture

The HTTP server responses this request with an “HTTP/1.1 200 OK”. The pay-
load of this HTTP reply is the requested information as a SOAP message.
The source code of the HTTP server “Baracuda” had not been modified and will
not be added as annexe (under NDA).

7.1.4 SOAP to KOAP

We have a SOAP request arriving at the MileGate which needs to be answered
by the system. The only interface to the embedded system needs KOAP re-
quests (see Code 12: KOAP request) which have exactly the same body as our
SOAP requests.
A simple DOM parser identifies the addressed unit and function and changes
the syntax of the message (SOAP to KOAP and vice versa).

The SOAP and KOAP encoder provided by KEYMILE has not been modified, the
source code is under publishing restriction.

7.1.5 KOAP to C++

The invocation of the C++ routines is used for all different kinds of configura-
tion interfaces. Web Service can use the same manner as we changed before
from SOAP to KOAP messages.
The architecture of the MileGate is hidden behind the KOAP message.

Source code under publishing restriction.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 91 of 117

4

5

7.2 WSDL File generation

For this project we had to modify the existing XSLT provided by the KEYMILE
according to the new parts of the manual described the Web Service.

The changes of the XSLT result directly all the parts added to the WSDL de-
scription. Thus the modifications of the XSLT will not be commented, we have
to mention at this point the added value for the WDSL file.

The new parts added to the WSDL file are:
• A new fault type has been declared
• The header & fault messages had been declared
• The fault message had been integrated into each operation
• Declaration of WS-Transfer “soapAction” for each operation
• The automatic binding of the headers into the SOAP messages had

been added for each operation
• The wsdl:service element with the Endpoint References (addressing of

the resource and management function) had been add

This list corresponds to the highlighted parts in the manually described Web
Service in annexe:WSDL.

In the XSLT file provided as annexe: XSLT, all the newly added parts were
highlighted.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 92 of 117

8 Tests

Abstract

This chapter contains the definition of the tests and the validation of the functional-
ity of the prototype.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 93 of 117

8.1 Tests Definition

This section contains the definitions for the tests we want to perform on the
prototype.

8.1.1 Verification of the Web Service

The verification task for the Web Service is very important but in this case also
quite difficult because the reaction of the MileGate system is predefined. We
grouped the verification into two major parties. The first part is the validation
which checks if the descriptions follow the standards.
The second part contains some basic tests of the system. Here we have to be
aware that for lot of tests the existing software is involved which will not be
modified at the moment.

8.1.1.1 Validation

For the validation of the Web Service, the most important point is that the de-
scription follows the rules defined for WDSL. With the XSLT we generate at the
moment just the description for the definition WSDL 1.1. We wont validate
WSDL 2.0 because the SOAP to KOAP translation in the MileGate does not sup-
port WSDL 2.0.

Also the SOAP messages need to be in accordance with the standard. This is
difficult to test at the moment because the final SOAP request is generated by
the client framework.

The header fields are defined according to the used standards (WS-Manage-
ment and WS-Addressing) and included automatically into the SOAP message
skeleton. The used Namespaces of SOAP and for the two Web Service con-
cepts are also written automatically into the message.
For the body part of the SOAP message, the elements defined in the WSDL are
included.

The validation of the Web Service functions will be performed with SOAPui
2.5.1, a Web Service Testing tool developed by eviware.
The following example shows the automatic generated SOAP message of the
program SOAPui30 (Web Service Testing Tool) of the operation 'SetLabel__op-
eration' defined in the WSDL file. The addressing parameters are missing be-
cause the endpoint reference need to be selected by programming.

30http://www.soapui.org

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 94 of 117

<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
 xmlns:add="http://schemas.xmlsoap.org/ws/2004/08/addressing"
 xmlns:man="http://schemas.xmlsoap.org/ws/2005/06/management"
 xmlns:mob="http://www.keymile.com/milegate/ws/mob_mainbase_xml">
 <soap:Header>
 <add:MessageID/>
 <add:Action/>
 <add:ReplyTo/>
 <add:To/>
 <man:SelectorSet/>
 <man:ResourceURI/>
 </soap:Header>
 <soap:Body>
 <mob:Label>
 <mob:user>?</mob:user>
 <mob:service>?</mob:service>
 <mob:description>?</mob:description>
 </mob:Label>
 </soap:Body>
</soap:Envelope>
Code 56: SOAPui skeleton

Defined endpoint reference in the WSDL file:

<wsa:EndpointReference name="labelEPR"
 xmlns:wsaw="http://www.w3.org/2006/02/addressing/wsdl">
 <wsa:Address>http://localhost:9357/wsman/</wsa:Address>
 <wsa:ReferenceParameters>
 <wsman:SelectorSet>
 <wsman:Selector name="mf">main</wsman:Selector>
 <wsman:Selector name="property">/Label</wsman:Selector>
 </wsman:SelectorSet>
 <wsman:ResourceURI>/unit-11</wsman:ResourceURI>
 </wsa:ReferenceParameters>
</wsa:EndpointReference>
Code 57: WSDL endpoint reference

With the parameters from the endpoint reference the request looks as fol-
lowed (the EPR has to be added in the framework):

<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
 xmlns:add="http://schemas.xmlsoap.org/ws/2004/08/addressing"
 xmlns:man="http://schemas.xmlsoap.org/ws/2005/06/management"
 xmlns:mob="http://www.keymile.com/milegate/ws/mob_mainbase_xml">
 <soap:Header>
 <add:MessageID>urn:uuid:d2345623-bc89-4323-9e83-ueldjfued</add:Mes

sageID>
 <add:Action>http://schemas.xmlsoap.org/ws/2004/09/transfer/Get
 </add:Action>
 <add:ReplyTo>
 <add:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role

/anonymous</add:Address>

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 95 of 117

 </add:ReplyTo>
 <add:To>http://localhost:9357/man</add:To>
 <man:SelectorSet>
 <man:Selector name="mf">main</man:Selector>
 <man:Selector name="property">/Label</man:Selector>
 </man:SelectorSet>
 <man:ResourceURI>/unit-12</man:ResourceURI>
 </soap:Header>
 <soap:Body>
 <mob:Label>
 <mob:user>?</mob:user>
 <mob:service>?</mob:service>
 <mob:description>?</mob:description>
 </mob:Label>
 </soap:Body>
</soap:Envelope>
Code 58: merged SOAP request

- SelectorSet and ResourceURI are specified in endpoint reference EPR
- Action is specified in the <wsdl:operation>
- MessageID and ReplyTo must be added with the framework

8.1.1.2 Testing

The testing does not completely verify if the Web Services is functioning per-
fectly. Testing of the function has to be verified with a framework. The aim of
this part is to document the reactions on certain requests and to suggest some
modifications for the actual implementation.

We want to check the reaction on malformed addressing (unit, mf, property),
malformed format of the body and of course also the reaction on a well formed
request. Additionally we want to check:

• Same MessageID
• No address
• Malformed ResourceURI (unit)
• Malformed Selector (mf and property)
• Malformed SOAP body

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 96 of 117

from EPR

8.1.2 Framework verification

It is important to note that a basic prototype is already realized. We can gen-
erate and send SOAP requests manually. This proves the feasibility of the ser-
vice described.
For more comfort we will extend the completion of the prototype by using a
framework other than SoapUI. So we can test our service under a condition of
actual use. To do this we need to install a framework.
Our choice is focused on AXIS2 since it is the only one framework we have
studied in depth. For security we will also install WCF (Visual Studio).
The installation of an http server is no longer necessary because we already
have one available (baraccuda).

8.1.2.1 Framework Installation

AXIS2 :
• Installation of fedora 10
• Installation of a suitable container such as Tomcat for linux.
• Installation of xFer via ant (xFer module is needed for WS-Transfer)

WCF : Installation of visual studio.

8.1.2.2 Test Definition

The following tests will be done at possible:
• Generate java classes from our wsdl file.
• Test the integration of xFer module (ws-transfer) with the sample code

provided
• Test the reaction of the framework opposite to WS-Management may

be it supported under WS-addressing.
• Send a SetLabel an receive a GetLabel.
• Interoperability testing using the WS-I tools (WS-Validator & WS-Mon

itor) and see the conformance report.
• Use WSO2 Carbon tools to convert WSDL 1.1 to 2.0 which is the

real recommendation of W3C and check if the service can be
consume too with the new wsdl file.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 97 of 117

8.2 Validation of performed tests

This section contains the validation of the tests we performed on the proto-
type.

8.2.1 Validation of files / messages

The validation of the WSDL files was performed with the “<oXygen/> XML Ed-
itor 8.2”.
The manual described WSDL file MILEGATE.wsdl and the generated (XSLT) file
mob_mainbase_xml.wsdl and mob_mainequipment.wsdl had been validated
for WSDL 1.1 and checked if the XML is wellformed with oXygen.

All this tree files are have the result:

WSDL 1.1 validation successful

The exchanged SOAP messages has been checked if they are wellforemed
and correspond to the XML schema (http://schemas.xmlsoap.org/soap/envel-
ope) of SOAP 1.1. SOAPui supports only SOAP 1.1. This verification has been
made for all the SOAP messages (request and response) described in this
chapter.

SOAP 1.1 check successful

8.2.2 Testing the response of the MileGate

The first test is the confirmation of the functionality based on a well-formed
SOAP request. Later we observe the reaction on malformed requests and
make some suggestions.
As described in the definition of the test, the SOAP request is just partially
generated by SOAPui. The endpoint references were added manually.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 98 of 117

8.2.2.1 Well-formed request

Request (GetLabel) sent with SOAPui:

<!--

 GET LABEL

-->
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:mob="http://www.keymile.com/milegate/ws/mob_mainbase_xml"
 xmlns:wsa ="http://schemas.xmlsoap.org/ws/2004/08/addressing"
 xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd">
 <soapenv:Header>
 <wsa:To>http://192.168.32.171/wsman</wsa:To>
 <wsman:ResourceURI>/unit-11</wsman:ResourceURI>
 <wsa:ReplyTo>
 <wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/rol

e/anonymous</wsa:Address>
 </wsa:ReplyTo>
 <wsman:SelectorSet>
 <wsman:Selector Name="mf">main</wsman:Selector>
 <wsman:Selector Name="proerty">www.keymile.com/mg/2008/06/MoInfo/

Label</wsman:Selector>
 </wsman:SelectorSet>
 <wsa:Action>http://schemas.xmlsoap.org/ws/2004/09/transfer/Get
 </wsa:Action>
 <wsa:MessageID>urn:uuid:d2345623-bc89-4323-9e83-ueldjfued

</wsa:MessageID>
 </soapenv:Header>
 <soapenv:Body/>
</soapenv:Envelope>
Code 59: GetLabel request

Response of MileGate:

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
 <env:Header>
 <wsa:MessageID>urn:uuid:d2345623-bc89-4323-9e83-ueldjfued-

resp</wsa:MessageID>
 <wsa:RelatesTo>urn:uuid:d2345623-bc89-4323-9e83-ueldj

fued</wsa:RelatesTo>
 <wsa:To>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonym

ous</wsa:To>
 <wsa:Action>http://schemas.xmlsoap.org/ws/2004/09/transfer/GetRe

sponse</wsa:Action>
 </env:Header>
 <env:Body>

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 99 of 117

 <Label>
 <user>?</user>
 <service>?</service>
 <description>?</description>
 </Label>
 </env:Body>
</env:Envelope>
Code 60: GetLabel response

Request (SetLabel) sent with SOAPui:

<!--

 SET LABEL

-->
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:mob="http://www.keymile.com/milegate/ws/mob_mainbase_xml"
 xmlns:wsa ="http://schemas.xmlsoap.org/ws/2004/08/addressing"
 xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd">
 <soapenv:Header>
 <wsa:To>http://192.168.32.171/wsman</wsa:To>
 <wsman:ResourceURI>/unit-11</wsman:ResourceURI>
 <wsa:ReplyTo>
 <wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/rol

e/anonymous</wsa:Address>
 </wsa:ReplyTo>
 <wsman:SelectorSet>
 <wsman:Selector Name="mf">main</wsman:Selector>
 <wsman:Selector Name="property">

www.keymile.com/mg/2008/06/MoInfo/Label</wsman:Selector>
 </wsman:SelectorSet>
 <wsa:Action>http://schemas.xmlsoap.org/ws/2004/09/transfer/Put
 </wsa:Action>
 <wsa:MessageID>urn:uuid:d2345623-bc89-4323-9e83-ueldjfued
 </wsa:MessageID>
 </soapenv:Header>
 <soapenv:Body>
 <mob:Label>
 <mob:user>user</mob:user>
 <mob:service>service</mob:service>
 <mob:description>description</mob:description>
 </mob:Label>
 </soapenv:Body>
</soapenv:Envelope>
Code 61: SetLabel request

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 100 of 117

Response of MileGate:

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
 <env:Header>
 <wsa:MessageID>urn:uuid:d2345623-bc89-4323-9e83-ueldjfued-resp
 </wsa:MessageID>
 <wsa:RelatesTo>urn:uuid:d2345623-bc89-4323-9e83-ueldjfued
 </wsa:RelatesTo>
 <wsa:To>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonym

ous</wsa:To>
 <wsa:Action>http://schemas.xmlsoap.org/ws/2004/09/transfer/PutRe

sponse</wsa:Action>
 </env:Header>
 <env:Body></env:Body>
</env:Envelope>
Code 62: SetLabel response

If we send the first request another time, we get the new values from the
“SetLabel” request:

 ...
 <env:Body>
 <Label>
 <user>user</user>
 <service>service</service>
 <description>description</description>
 </Label>
 </env:Body>
 …
Code 63: new GetLabel response

Comment:
The request has some problems if the comment at the beginning of the re-
quest is removed. This error is lied to problems of the HTTP server implement-
ation which has difficulties with the handling of too small requests. Will be
solved on the next version of the HTTP server on the MileGate.

All the requests were replied successful and in a response time of between
7ms and 24ms (10 tries).

Validation successful

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 101 of 117

8.2.2.2 Malformed request

Same MessageID
The system does not react on the message identities, it just adds the string “-
resp” to the response. It is basically the job of the client programmer to en-
sure that the ID is unique.
A check mechanism with timer would be possible on server side which gener-
ates the predefined WS-Addressing fault wsa:DuplicateMessageID.

No address
The system does not react on a missing or mismatching address (wsa:To) in
the SOAP message. This is field is actually not necessary because the address
on the HTTP layer is defined with the service declaration of the interface. The
principal aim of this field is to allow the forwarding of the message to another
system endpoint.
If this will be implemented in the future, the match of the wsa:To and the loc-
al address should be verified. In case of success, the request should be
treated, otherwise it should be forwarded or an wsa:MissingAddressInEPR re-
turned.

Malformed ResourceURI (unit)
The system responds with the fault “Operation not found”

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
 <env:Body>
 <env:Fault>
 <env:Code>
 <env:Value>env:Sender</env:Value>
 </env:Code>
 <env:Reason>
 <env:Text xml:lang="en">

EXTERNAL.PLATFORM.MOB.OPERATION_NOT_FOUND</env:Text>
 </env:Reason>
 </env:Fault>
 </env:Body>
</env:Envelope>
Code 64: Response on malformed ResourceURI

This reaction provides the programmer the information that something with
the addressing went wrong. The wanted function is not available for this re-
source. We suggest either to indicate the unavailability of the operation for
this resource or to use the predefined wsa:InvalidEPR to keep it general.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 102 of 117

Malformed Selector (mf and property)
The reaction of the system is for both selectors identically to the malformed
ReourceURI (EXTERNAL.PLATFORM.MOB.OPERATION_NOT_FOUND).
Here it is also possible to return an wsa:InvalidEPR fault or to use something
more specific as “unsupported/unknown operation”.

Malformed SOAP body
With a malformed body, means that it does not correspond the WSDL descrip-
tion. Actually, the service does not know the WSDL description but it has all
the information provided in the ADF (accesspoint definition file) and verifies
the syntax there.

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
 <env:Body>
 <env:Fault>
 <env:Code>
 <env:Value>env:Sender</env:Value>
 </env:Code>
 <env:Reason>
 <env:Text xml:lang="en">

EXTERNAL.PLATFORM.MOB.XML_DECODING_ERROR</env:Text>
 </env:Reason>
 </env:Fault>
 </env:Body>
</env:Envelope>
Code 65: Response on malformed SOAP body

The provided error description “xml decoding error” does not clearly indicate
the reason and should be more precise.
We have the same reaction if we delete one element of a valid body.

Remark
Most of the suggestions will be difficult to implement because the system does
not provide further information about the failure. The reaction on “same mes-
sageID” and “No address” can be responded by the service which transform-
ates the SOAP to KOAP messages. The other reactions need provoke a error
message in the base system which gives information about the internal struc-
ture away.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 103 of 117

8.2.3 Validation of framework

8.2.3.1 Problems encountered

When we try to generate the client code from the WSDL file by using the pro-
gram WSDL2JAVA of AXIS, we get lot errors. at first we thought that the error
was internal to the AXIS2 framework as it has been said on the fedora for-
um31. But by trying another test tool32 to validate the wsdl file, we realized it
did not conform to the W3C specification.

Error 1

Illustration 66: Error 1

Error 2: after remove MessageIDMessage

Illustration 67: Error 2

We try to convert the WSDL file 1.1 to 2.0 too and get the same problem. That
means the WSDL file contains statements that are not conforming to W3C
specification symbolize by “http://schemas.xmlsoap.org “ in the message er-
ror.

Illustration 68: WSDL Converter

31 http://forums.fedora-fr.org/
32 http://wso2.org/tools

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 104 of 117

http://wso2.org/tools
http://forums.fedora-fr.org/

To be sure of our test, we take the Axis2UserGuide.wsdl then we do the same
test and the results below is obtained:

1. Conversion of WSDL 1.1 to WSDL 2.0 Successful→
2. Generation of java class with WSDL 1.1 and WSDL 2.0 Successful (we don’t waste→
time to try to use those classes because we don’t need them)

Furthermore we load the xFer module according to WSO2 tutorial and test it
with the sample client provided by WSO2.
We get a connectException as report below :

Exception in thread "main" org.apache.axis2.AxisFault: Connection timed out:
connect
 at org.apache.axis2.AxisFault.makeFault(AxisFault.java:431)
 at org.apache.axis2.transport.http.HTTPSender.sendViaPost(HTTPSender-
.java:195)
 at
org.apache.axis2.transport.http.HTTPSender.send(HTTPSender.java:77)
 at org.apache.axis2.transport.http.CommonsHTTPTransportSender-
.writeMessageWithCommons(Common
sHTTPTransportSender.java:328)
 at
org.apache.axis2.transport.http.CommonsHTTPTransportSender.invoke(CommonsHT-
TPTransportSen
der.java:206)
…
…
…
Code 69: connectException

We fix that error by setting properly the AXIS2_HOME variable to point to the
location in which we've unpacked it…. This problem is simply caused by the
environment variable…
According to the remaining time, we could not perform all tests necessary for
a proper validation of the prototype.
It is important to note that while the java classes are not generated most of
the tests are not possible.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 105 of 117

9 Conclusion

The study of the SOA was very interesting and helped to understand the ad-
vancement of the Internet in direction of Web Services. Not all the ideas are
implementable for the MileGate because we have existing constraints and
what is even more important, an existing and functional system. As all the
transformations towards an service oriented architecture, the process will be
very time-consuming.

Web Services have some exceptional concepts which offers a mass of new
possibilities. Here a careful study of the requirements and on the functionalit-
ies wanted to offer had to be performed.
Attention have to be paid on the level of complexity of the system to not set
limits for the implementation on the client side but also for not defining it
vague or ambiguous.

"Things should be made as simple as possible, but no simpler."
Quote Albert Einstein

The endpoints of the Web Service and its management pose some problems
which could be solved with the different techniques described. The easiest way
to manage them is to use the endpoint references EPR by programming on the
client side. A adapted version of the 'discover' (MileGate operation) which fur-
nishes just the required information for the Web Service would be more effi-
cient and would additionally allow to hide the infrastructure from the client.

We have a wide range of embedded HTTP server which offers C/C++ using as
KEYMILE hopes. However, a deeper study of the use of resources and memory
is still necessary

The actual MileGate notifications, which follows the same principles as WS-
Notification, should be translated into Web Service notifications and described
with meta description to make it machine-readable.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 106 of 117

For purposes of flexibility, the direct access of the management functions (not
over two parameters, e.g. main/label). It will be easier to define constraints
for the invocation of operations which are related to the access address (EPR).
The further idea is that we need to ensure that just possible functions can be
invoked. Possibilities therefore are the simple response with an error, the 'Val-
idWhile' provided by WS-A Metadata or the use of relation according to WS-
Distributed Management.

For the interoperability, the tools to manipulate schemas and WSDL contracts
are still badly connect to generation tools Contract First strategy is difficult to
implement. A problem is that most of developers write the code first and do
not plan the contract first.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 107 of 117

10 Thanks

We sincerely thank everyone who directly or indirecly has contributed and
supported us in different ways to achieve our educational objectives.

We provide a special to KEYMILE for the perfect hosting of this project, spe-
cially to Daniel Gachet and Marcel Bellorini for the offered time.

The project sessions with Philippe Joye, François Buntschu, Marcel Bellorini
and Daniel Gachet had a lot of very helpful and guiding inputs.

Another special big thank-you to all the proofreaders. Specially Hervé Kiki,
Jörg Schneider and Tamara Eggimann.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 108 of 117

11 Annexes

Abstract

In this last chapter you will find the references for this report and the revision his-
tory to comprehend the modifications on the document.

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 109 of 117

11.1 References

11.1.1 Keymile

• Introduction to the MileGate XML - Management Interface
• FILE: KEYMILE_XML-management-interface.pdf
• Web Services Interface for Milegate
• FILE: KEYMILE_WebServiceInterface.ppt
• User Guide – MileGate & MCST (KEYMILE Restriction)
• C++ Programming Style Guidelines, Common Part (KEYMILE Confidential)
• C++ Programming Practice Guidelines, Common Part (KEYMILE Confidential)

11.1.2 Service Oriented Architecture / Web Service Architecture

• W3C documents about Web Service Architecture
http://www.w3.org/2002/ws/arch/

• Reference Model for Service Oriented Architecture 1.0
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf

• Article: What Is Service-Oriented Architecture on webservices.xml.com
http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html

• Book: Service-orientierte Architekturen mit Web Services, Konzepte – Standards –
Praxis, Ingo Melzer et al., SPEKTRUM Akademischer Verlag

• Book: Web Services. Principles and Technology, Michael P. Papazoglou, PEARSON

11.1.3 Webservice description / concepts

• WSDL 1.1, www.w3.org/TR/wsdl

• WSDL 2.0, www.w3.org/TR/wsdl20

• SOAP, W3C Recommendation,
www.w3.org/TR/soap/

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 110 of 117

http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/wsdl
http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://www.w3.org/

• SOAP 1.2, W3C Recommendation,
http://w ww.w3.org/TR/soap12/

• XSLT 1.0, W3C Recommendation,
http://w ww.w3.org/TR/xslt

• XSLT 2.0, W3C Recommendation,
http://w ww.w3.org/TR/xslt20

• XHTML 1.0, W3C Recommendation,
http://www.w3.org/TR/xhtml1/

• WS-Addressing, W3C Recommendation,
http://www.w3.org/TR/ws-addr-core/

• WS-A: WSDL Binding, W3C Recommendation,
http://www.w3.org/TR/ws-addr-wsdl/

• WS-A: SOAP Binding, W3C Recommendation,
http://www.w3.org/TR/ws-addr-soap/

• WS-A: Metatdata, W3C Recommendation,
http://www.w3.org/TR/ws-addr-metadata/

• WS-Management, Distributed Management Task Force,
http://www.dmtf.org/standards/published_documents/DSP0226_1.0.0.pdf

• WS-Transfer, W3C Submission,
http://www.w3.org/Submission/WS-Transfer/

• WS-Discovery, OASIS Committee Specification,
http://docs.oasis-open.org/ws-dd/discovery/1.1/wsdd-discovery-1.1-spec.pdf

• WS-Base Notification, OASIS Standard,
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf

• WS-Brokered Notification, OASIS Standard,
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf

• WS-Topics, OASIS Standard,
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf

• WS-Resource, OASIS Standard,
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 111 of 117

http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/ws-dd/discovery/1.1/wsdd-discovery-1.1-spec.pdf
http://www.w3.org/Submission/WS-Transfer/
http://www.dmtf.org/standards/published_documents/DSP0226_1.0.0.pdf
http://www.w3.org/TR/ws-addr-metadata/
http://www.w3.org/TR/ws-addr-soap/
http://www.w3.org/TR/ws-addr-wsdl/
http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xslt20
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/soap12/
http://www.w3.org/TR/xhtml1/

• WS-Resource Properties, OASIS Standard,
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf

• WS-Distributed Management: Management Using Web Services MUWS Part 1, OAS-
IS Standard, http://docs.oasis-open.org/wsdm/wsdm-muws1-1.1-spec-os-01.pdf

• WS-Distributed Management: Management Using Web Services MUWS Part 2, OAS-
IS Standard
http://docs.oasis-open.org/wsdm/wsdm-muws2-1.1-spec-os-01.pdf

• UDDI (Universal Description, Discovery and Integration), OASIS Standard
http://uddi.org/pubs/uddi-v3.0.2-20041019.pdf

11.1.4 Embedded Webserver

http://www.appwebserver.org/
http://www.lighttpd.net/
http://www.nginx.org/
http://www.emweb.be/
http://www.cherokee-project.com/
http://www.goahead.com/products/webserver/Default.aspx
http://www.koanlogic.com/klone/features.html
http://www.allegrosoft.com/rpproduct.html
http://barracudaserver.com/Barracuda_web_server_SDK.html
http://www.iniche.com/webport.php
http://news.netcraft.com/archives/web_server_survey.html (pop-
ularity)
http://googleonlinesecurity.blogspot.com/2007/06/web-server-soft-
ware-and-malware.html (popularity)

11.1.5 Frameworks

AXIS2
• http://ws.apache.org/
• http://www.oasis-open.org/
• http://wso2.org/

CXF
• http://cxf.apache.org/

WSO2 Frameworks
• http://wso2.org/projects/wsf

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 112 of 117

http://wso2.org/projects/wsf
http://cxf.apache.org/
http://wso2.org/
http://www.oasis-open.org/
http://ws.apache.org/
https://webmail.hefr.ch/owa/redir.aspx?C=7b538c3348524647a45e9bcb1aacbe70&URL=http%3A%2F%2Fgoogleonlinesecurity.blogspot.com%2F2007%2F06%2Fweb-server-software-and-malware.html
https://webmail.hefr.ch/owa/redir.aspx?C=7b538c3348524647a45e9bcb1aacbe70&URL=http%3A%2F%2Fgoogleonlinesecurity.blogspot.com%2F2007%2F06%2Fweb-server-software-and-malware.html
https://webmail.hefr.ch/owa/redir.aspx?C=7b538c3348524647a45e9bcb1aacbe70&URL=http%3A%2F%2Fnews.netcraft.com%2Farchives%2Fweb_server_survey.html
https://webmail.hefr.ch/owa/redir.aspx?C=7b538c3348524647a45e9bcb1aacbe70&URL=http%3A%2F%2Fwww.iniche.com%2Fwebport.php
https://webmail.hefr.ch/owa/redir.aspx?C=7b538c3348524647a45e9bcb1aacbe70&URL=http%3A%2F%2Fbarracudaserver.com%2FBarracuda_web_server_SDK.html
https://webmail.hefr.ch/owa/redir.aspx?C=7b538c3348524647a45e9bcb1aacbe70&URL=http%3A%2F%2Fwww.allegrosoft.com%2Frpproduct.html
https://webmail.hefr.ch/owa/redir.aspx?C=7b538c3348524647a45e9bcb1aacbe70&URL=http%3A%2F%2Fwww.koanlogic.com%2Fklone%2Ffeatures.html
https://webmail.hefr.ch/owa/redir.aspx?C=7b538c3348524647a45e9bcb1aacbe70&URL=http%3A%2F%2Fwww.goahead.com%2Fproducts%2Fwebserver%2FDefault.aspx
https://webmail.hefr.ch/owa/redir.aspx?C=7b538c3348524647a45e9bcb1aacbe70&URL=http%3A%2F%2Fwww.cherokee-project.com%2F
https://webmail.hefr.ch/owa/redir.aspx?C=7b538c3348524647a45e9bcb1aacbe70&URL=http%3A%2F%2Fwww.emweb.be%2F
https://webmail.hefr.ch/owa/redir.aspx?C=7b538c3348524647a45e9bcb1aacbe70&URL=http%3A%2F%2Fwww.nginx.org%2F
https://webmail.hefr.ch/owa/redir.aspx?C=7b538c3348524647a45e9bcb1aacbe70&URL=http%3A%2F%2Fwww.lighttpd.net%2F
https://webmail.hefr.ch/owa/redir.aspx?C=7b538c3348524647a45e9bcb1aacbe70&URL=http%3A%2F%2Fwww.appwebserver.org%2F
http://uddi.org/pubs/uddi-v3.0.2-20041019.pdf
http://docs.oasis-open.org/wsdm/wsdm-muws2-1.1-spec-os-01.pdf
http://docs.oasis-open.org/wsdm/wsdm-muws1-1.1-spec-os-01.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf

• http://wso2.org/interop
• http://wso2.org/projects/commons

METRO
• https://wsit.dev.java.net/
• https://jaxb.dev.java.net/
• https://jax-ws.dev.java.net/
• http://java.sun.com/webservices/index.jsp

WCF
• http://msdn.microsoft.com/fr-fr/default.aspx

Others
• http://json.org/
• http://xmlbeans.apache.org/
• http://www.w3.org/TR/soap12-mtom/
• http://java.sun.com/developer/technicalArticles/xml/fastinfoset/

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 113 of 117

http://java.sun.com/developer/technicalArticles/xml/fastinfoset/
http://www.w3.org/TR/soap12-mtom/
http://xmlbeans.apache.org/
http://json.org/
http://msdn.microsoft.com/fr-fr/default.aspx
http://java.sun.com/webservices/index.jsp
https://jax-ws.dev.java.net/
https://jaxb.dev.java.net/
https://wsit.dev.java.net/
http://wso2.org/projects/commons
http://wso2.org/interop

11.2 Figures

Illustration 1: MILEGATE management interfaces.....................................8

Illustration 2: Existing system...9

Illustration 3: Existing access methods...9

Illustration 4: Approach with web service..10

Illustration 5: Approach with generation of HTML files.............................11

Illustration 6: MileGate...13

Illustration 7: MileGate Object Model structure.......................................14

Code 8: KOAP request..16

Code 9: KOAP response..17

Illustration 10: Before & sfter SOA...19

Illustration 11: Three roles in SOA...20

Illustration 12: Milegate case...25

Table 13: List of embedded servers..29

Table 14: HTTP Free HTTP Servers...30

Table 15: Shareware HTTP Servers...31

Table 16: HTTP server classification credits...32

Table 17: HTTP server classification memory footprint............................32

Table 18: HTTP server classification..32

Illustration 19: System structure...34

Table 20: Problems of HTML service and mitigation36

Illustration 21: Operation of the HTML Service.......................................37

Illustration 22: GUI prototype..38

Code 23: WSDL definitions..43

Code 24: WSDL documentation..43

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 114 of 117

Code 25: WSDL types...44

Code 26: WSDL message..45

Code 27: WSDL portType..46

Code 28: WSDL binding..47

Code 29: WSDL service..47

Code 30: SOAP GetLabel...48

Code 31: SOAP SetLabel...49

Code 32: WS-Ressource...55

Code 33: WS-Ressource SOAP binding..55

Code 34: WS-Base Notification..57

Code 35: Notification action..57

Code 36: XML problem...67

Illustration 37: modules of Basic Profile 1.1...70

Code 38: SOAP RPC style..72

Code 39: SOAP style comparison...73

Illustration 40: suitable encoding type..74

Illustration 41: KEYMILE Internal System..75

Illustration 42: Combination specification..75

Illustration 43: Reality combination...75

Illustration 44: What client Side framework should be allowed.................76

Table 45: WS-Concepts..79

Table 46: Transport ...81

Table 47: Encoding Table..81

Table 48: Data Binding...82

Table 49: General features..82

Illustration 50: WS-Monitor...85

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 115 of 117

Illustration 51: WS-Validator...86

Illustration 52: Interoperability Testing Tools 1.1...................................86

Illustration 53: Exemple of exchange Scenario of simple type..................87

Illustration 54: SOAPui stubs...90

Code 55: Wireshark HTTP capture..91

Code 56: SOAPui skeleton...95

Code 57: WSDL endpoint reference..95

Code 58: merged SOAP request...96

Code 59: GetLabel request..99

Code 60: GetLabel response..100

Code 61: SetLabel request..100

Code 62: SetLabel response..101

Code 63: new GetLabel response...101

Code 64: Response on malformed ResourceURI...................................102

Code 65: Response on malformed SOAP body......................................103

Illustration 66: Error 1..104

Illustration 67: Error 2..104

Illustration 68: WSDL Converter...104

Code 69: connectException...105

Illustration 10: Before & after SOA
Source: http://www.sun.com/products/soa/img/ig_soa_before_after.gif

Illustration 11: Three roles in SOA
Source: http://www.w3.org/2003/Talks/0521-hh-wsa/soa.png

Illustration 37, 42, 43
Source: http://msdn.microsoft.com

TELECOM-WS
Manage Telecommunication

equipment using Web Services
page 116 of 117

http://msdn.microsoft.com/
http://www.w3.org/2003/Talks/0521-hh-wsa/soa.png
http://www.sun.com/products/soa/img/ig_soa_before_after.gif

11.3 Complementary Information

Annexe:Journal

Annexe:PV

Annexe:Planing

Annexe:HTML Service

Annexe:WSDL

Annexe:XSLT

	1 Introduction
	1.1 Definitions
	1.2 Project
	1.2.1 Introduction
	1.2.2 Description of project
	1.2.2.1 Actual management system
	1.2.2.2 Work to perform
	1.2.2.2.1 Machine-Machine Interface (MMI)
	1.2.2.2.2 Human-Machine Interface (HMI)

	1.2.3 Objectives
	1.2.3.1 Side issue
	1.2.3.2 Main issue

	1.2.4 Distribution of Tasks

	1.3 What is MileGate?
	1.3.1 Flexibility in interfaces

	1.4 General structure of the MileGate
	1.4.1 Structure of the Object Model

	1.5 Constraints for MileGate
	1.5.1 Processor
	1.5.2 Memory

	1.6 Communication with the MileGate
	1.6.1 Client-Server system
	1.6.2 Format of the requests and responses

	2 Introduction into Web Services
	2.1 SOA (Service-Oriented Architecture)
	2.1.1 Architecture
	2.1.2 Basic characteristics of a SOA

	2.2 Web Service Architecture
	2.2.1 Definition
	2.2.2 Basic Concept
	2.2.3 Standardization

	3 Traditional web service
	3.1 Embedded http server
	3.1.1 Selective criteria of servers
	3.1.2 Required field
	3.1.2.1 Security
	3.1.2.2 Dynamic content
	3.1.2.3 Common functionality

	3.1.3 List of few embedded servers
	3.1.4 Comparative table of few servers
	3.1.4.1 Free servers
	3.1.4.2 Shareware Servers

	3.1.5 Classification of compared servers
	3.1.6 Few suggestions of server web generating content dynamically
	3.1.6.1 Web server with incorporated module C/C++
	3.1.6.2 Web server using SSI / SSJ
	3.1.6.3 Web server with incorporated module CGI / FastCGI

	3.2 HTML generation service
	3.2.1 Background
	3.2.2 Business functions
	3.2.3 Feasibility study
	3.2.3.1 Identify problems for implementation

	3.2.4 Recommendation for Implementation
	3.2.4.1 Operation of the HTML Service
	3.2.4.2 GUI Prototype
	3.2.4.3 Reaction on changes
	3.2.4.4 Problems

	3.2.5 Conclusion

	4 W3C Web Service Description
	4.1 Introduction
	4.2 Structure of the description
	4.3 SOAP Message

	5 Web Service Concepts
	5.1 Addressing
	5.1.1 WS-Addressing
	5.1.1.1 Endpoint Reference EPR

	5.1.2 WS-Management
	5.1.3 WS-Transfer

	5.2 Resource
	5.2.1 WS-Discovery
	5.2.2 WS-Resource
	5.2.2.1 WS-Resource Properties19
	5.2.2.2 Comment

	5.2.3 WS-Notification
	5.2.3.1 WS-Base Notification
	5.2.3.2 WS-Brokered Notification
	5.2.3.3 WS-Topics
	5.2.3.4 Comment

	5.3 Management
	5.3.1 WS-Distributed Management
	5.3.1.1 Management Using Web Services
	5.3.1.2 Comment

	6 Web Service Tools
	6.1 Clients Tools
	6.1.1 Interoperability between web services and SOAP protocol
	6.1.1.1 Transport problem
	6.1.1.2 XML Problem
	6.1.1.3 SOAP protocol problem

	6.1.2 Web Services Interoperability Organization (WS►I)
	6.1.2.1 WS-Profile description
	6.1.2.1.1 Basic Profile V1.1 (10 April 2006)
	6.1.2.1.2 Attachment Profile V1.0 (20 April 2006)
	6.1.2.1.3 Simple SOAP Binding Profile V1.0 (24 August 2004)
	6.1.2.1.4 Basic Security Profile V1.0 (30 March 2007)

	6.1.3 Presentation of a few frameworks
	6.1.3.1 What is SOAP?
	6.1.3.2 SOAP encoding and formatting rules
	6.1.3.2.1 Encoding styles of SOAP messages
	6.1.3.2.2 KEYMILE: Constraints and Needs
	6.1.3.2.3 Combination and Interoperability list

	6.1.3.3 Framework fonctionnalities

	6.1.4 Framework evaluation
	6.1.4.1 What to evaluate?
	6.1.4.2 Definitions

	6.1.5 Tests tools
	6.1.5.1 Monitor
	6.1.5.2 Validator

	7 Realization of the Prototype
	7.1 Flow of information
	7.1.1 SFD to WSDL
	7.1.2 WSDL to Code & SOAP
	7.1.3 HTTP Server
	7.1.4 SOAP to KOAP
	7.1.5 KOAP to C++

	7.2 WSDL File generation

	8 Tests
	8.1 Tests Definition
	8.1.1 Verification of the Web Service
	8.1.1.1 Validation
	8.1.1.2 Testing

	8.1.2 Framework verification
	8.1.2.1 Framework Installation
	8.1.2.2 Test Definition

	8.2 Validation of performed tests
	8.2.1 Validation of files / messages
	8.2.2 Testing the response of the MileGate
	8.2.2.1 Well-formed request
	8.2.2.2 Malformed request

	8.2.3 Validation of framework
	8.2.3.1 Problems encountered

	9 Conclusion
	10 Thanks
	11 Annexes
	11.1 References
	11.1.1 Keymile
	11.1.2 Service Oriented Architecture / Web Service Architecture
	11.1.3 Webservice description / concepts
	11.1.4 Embedded Webserver
	11.1.5 Frameworks

	11.2 Figures
	11.3 Complementary Information

