
Manage Telecommunication equipment using web
services

Class
T3

EIA-FR / KEYMILE Kiki Thierry, Schneider David 03/07/09

Diploma Project

Manage Telecommunication equipment
using Web Services

Acronym: TELECOM-WS
Number: D09T02

Date: 25.05.09 – 10.07.09

Professeurs:
Philippe Joye
François Buntschu

Students:
Thierry Kiki
David Schneider

Mandatory:
Daniel Gachet

Expert:
Nicolas Mayencourt

TELECOM-WS

 © KEYMILE AG

Table of contents i
1 Introduction 6

1.1 Definitions 7

1.2 Project 8
1.2.1 Introduction 8
1.2.2 Description of project 8
1.2.3 Objectives 11
1.2.4 Distribution of Tasks 11

1.3 What is MileGate? 12
1.3.1 Flexibility in interfaces 12

1.4 General structure of the MileGate 13
1.4.1 Structure of the Object Model 13

1.5 Constraints for MileGate 14
1.5.1 Processor 14
1.5.2 Memory 14

1.6 Operating mode of MileGate 15
1.6.1 Communication with the MileGate 15

2 Introduction into Web Services 17

2.1 Traditional web service 18

2.2 SOA (Service-Oriented Architecture) 19
2.2.1 Architecture 19
2.2.2 Basic characteristics of a SOA 21

2.3 Web Service Architecture 22
2.3.1 Definition 22
2.3.2 Basic Concept 22
2.3.3 Standardization 23

3 Traditional web service 24

3.1 Embedded http server 25

3.2 HTML generation service 26
3.2.1 Background 26
3.2.2 Business functions 26

TELECOM-WS Manage Telecommunication equip-
ment using Web Services

iii

 Table of contents © KEYMILE AG

3.2.3 Feasibility study 27
3.2.4 Recommendation for Implementation 28
3.2.5 Conclusion 32

4 W3C Web Service Description 33

4.1 Introduction 34

4.2 Structure of the description 35

4.3 SOAP Message 40

5 Web Service Concepts 42

5.1 Addressing 43
5.1.1 WS-Addressing 43
5.1.2 WS-Management 44
5.1.3 WS-Transfer 44

5.2 Resource 46
5.2.1 WS-Discovery 46
5.2.2 WS-Resource 46
5.2.3 WS-Notification 48

5.3 Management 51
5.3.1 WS-Distributed Management 51

5.4 Conclusion 56

6 Web Service Tools 57

6.1 Clients Tools 58
6.1.1 Interoperability common problems between web services and SOAP protocol. 58
6.1.2 Web Services Interoperability Organization (WS►I) 58
6.1.3 Presentation of a few frameworks 58
6.1.4 Framework evaluation 58
6.1.5 Tests tools 58

7 Realization of the Prototype 59

7.1 Flow of information 60
7.1.1 SFD to WSDL 60
7.1.2 WSDL to Code & SOAP 61
7.1.3 HTTP Server 61
7.1.4 SOAP to KOAP 61
7.1.5 KOAP to C++ 62

7.2 SOAP message structure 63

7.3 WSDL File generation 64

8 Tests 65

8.1 Tests Definition 66

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
iv

 Table of contents © KEYMILE AG

8.1.1 Verification of the Web Service 66

8.2 Validation of performed tests 69
8.2.1 Validation of files / messages 69
8.2.2 Testing the response of the MileGate: 69

9 Conclusion 75

10 Annexes 76

10.1 References 77
10.1.1 Keymile: 77
10.1.2 Protocol: 77
10.1.3 Embedded Webserver 77
10.1.4 Service Oriented Architecture / Web Service Architecture 78
10.1.5 Webservice description / concepts 78

10.2 Figures 80

10.3 Revision history 81

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
v

 © KEYMILE AG

1 Introduction

Abstract

This first chapter introduces you into the Bachelor Project of Thierry Kiki and David
Schneider. Necessary definitions and explications for the understanding of the re-
port is provided here.

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 6 of 81

 © KEYMILE AG

1.1 Definitions

MileGate
MO: Managed Object
MOM: Managed Object Model
moType: Managed Object Type
MF: Management Function
ADF: AccesPoint (MO) – definition file
SFD:
MCST: MileGate Configuration Software Tool
KOAP: KEYMILE Object Access Protocol

Web Service
XML: Extensible Markup Language (W3C recommendation)
SOAP: Simple Object Access Protocol (W3C recommendation)
Web Services: W3C recommendation
GUI: Graphical User Interface

Others
ECLI: Embedded Comand Line Interface
HMI: Human-Machine Interface
MMI: Machine-Machine Interface

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 7 of 81

 © KEYMILE AG

1.2 Project

This section describes the project and introduces the equipment. We defined
the objectives we planed to reach at the initiation phase of the project. The
distribution of tasks between the participators of the project will also be
defined here.

1.2.1 Introduction

The company KEYMILE wishes a utility to manage its next generation telecom-
munication equipment with a system using web services. Actually, the man-
agement of the object model is performed either over an embedded command
line (ECLI), syslog, SNMP or with the exchange of proprietary XML messages
(KM-KOAP). The aim of this project is to find standardized solutions using web
services (MMI) or to offer access via a web browser (HMI).

Illustration 1: MILEGATE management interfaces

1.2.2 Description of project

As this project needs to be adapted to the existing system, we need to respect
a few constraints.
In the following image, the relations between the KEYMILE file describing the
internal object model (SFD, XML) and the AccessPoint Definition File ADF (pro-
prietary, XML).

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 8 of 81

 © KEYMILE AG

1.2.2.1 Actual State

At the moment, the management system uses ADF which is a collection of
SFD and describes one single unit in the MileGate. The core unit and access
point of the MileGate is in slot 11.

Illustration 2: Existing system

If we represent the actual communication more in detail, we see how the ex-
isting management utilities access the MileGate Object Model.

Illustration 3: Existing access methods

1.2.2.2 Work to perform

We have two new approaches for accessing the MileGate Object Model. The
tasks to perform are represented in red.

1.2.2.2.1 Machine-Machine Interface (MMI)

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 9 of 81

 © KEYMILE AG

The Web Service Description (WSDL file) which would finally be created will be
the input for the client framework. The framework will generate code (for ex-
ample Java, C, C++, Perl, Pyton, PHP, ..) automatically according to the con-
straints defined in the web service description.
The messages of the type SOAP (transported over HTTP) are treated within
the embedded HTTP server and afterward transformed from SOAP-XML into
the proprietary XML format which is the only accessible interface of the MileG-
ate.

Illustration 4: Approach with web service

1.2.2.2.2 Human-Machine Interface (HMI)

To be accessible by humans, the MileGate should provide HTML files generated
at runtime. Therefore, we connect the HTTP Server not with the Client frame-
work but with a web browser.

Illustration 5: Approach with generation of
HTML files

For both approaches the MileGate Object Model manages the call of the C++
routines from the proprietary XML messages. In addition, it communicates
with the hardware and affects storage/request of data.

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 10 of 81

2

2

3

4 6

55 2

3

5
5

12

 © KEYMILE AG

1.2.3 Objectives

1.2.3.1 Side issue

Find a good way to generate on the fly HTML pages within the
MilGate which providing a web browser access.
Survey and evaluate different embedded HTTP servers running
on Linux and/or VxWorks for the MilGate.

1.2.3.2 Main issue

Survey and evaluate different client frameworks and describe
their compatibilities with the Web Services.
Describe the flow of information from the KEYMILE files which
describes the internal structure through the embedded
HTTP Server to the MileGate
Define the web service and the necessary transformation.
Implement a prototype using the web service (MMI).

1.2.4 Distribution of Tasks

A strict division of the responsibilities was demanded. Even though the project
was difficult to subdivide at the initiation phase, we split the tasks after some
discussions as followed:

Thierry Kiki surveys and evaluates the embedded HTTP servers and client
frameworks. The compatibility of the frameworks with the Web Services will
be described and the client side of the prototype implemented.

David Schneider studies the feasibility for HTML generation within the MileGate
and recommends a implementation. A Web Service will be described using
WSDL and with it the automatic transformation to exchanged SOAP messages.
The transformation from description files to WSDL and from SOAP to the pro-
prietary XML format have to be adapted and described.
The resulting chapter are “2. Introduction into Web Services”, “4. Web Service
Description”, “5. Web Service Concepts” and the Annexe ??

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 11 of 81

2

3

4

5

1

6

 © KEYMILE AG

1.3 What is MileGate?

MileGate is an IP-based multi-service next-generation access platform that
can support you in expanding your network so that it is fit for the future.
MileGate combines carrier grade broadband access, telephony and data inter-
face in one single, compact access platform.
By using MileGate you can migrate whole or parts of your telecommunications
network to the NGN. Expand your range of services to include new, high qual-
ity Triple Play and broadband business services, and continue to provide the
range of traditional telephony and data services at the same time, without
having to rely on two systems.1

The system has one core unit and the possibility to plug 20 other units with
different interfaces. As an example the MileGate provides up to 960 xDSL or
456 COMBO connections (POTS and ADSL2plus).

1.3.1 Flexibility in interfaces

Wide range of interfaces
- POTS (Plain Old Telephone Service)
- ISDN
- ADSL/ADSL2/ADSL2plus
- VDSL2
- SHDSL
- COMBO solution (POTS and ADSL2plus)
- Optical Ethernet (100BaseFx or GbE)
- Electrical Ethernet (100BaseT)
- Legacy data interfaces (E1, V.35, V.36, X.21)

1 http://www.keymile.com/media/en/internet/products/milegate/z_brochures/MileGate_Product_Overview.pdf

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 12 of 81

Illustration 6: MileGate

 © KEYMILE AG

1.4 General structure of the MileGate

This section describes the important parts of the MileGate structure and some
mechanisms needed for the implementation of the interfaces. This section
provides an abridged version of the annexe ???.

1.4.1 Structure of the Object Model

The structure has been studied on the basis of the document “Introduction to
the MileGate XML Management Interface” and the actual MileGate Configura-
tion Software Tool (MCST).
We have to clarify at the very beginning that no direct access to functions on
the embedded system is provided. Information exchange with the MileGate
needs to be modeled according to the Managed object model (MOM). The
managed objects (MOs) are an abstract view of resources, i.e. physical or lo-
gical parts of the equipment to be managed.

The tree of Managed Objects (MO) builds a hierarchical model.

Illustration 7: MileGate Object Model structure

Each MO has its proper set of Management Functions (MF) depending on the
type. The possible management functions are: Main, Configuration, Fault Man-
agement, Performance Management and Status
Each of this MF has possible properties which also depend on the type and can
be changes with the MCST.

Additional information about the complete structure of the MileGate 2500
management functions, the mechanism for discovering the connected units,
structure of the MileGate Accesspoint Description File (ADF), MCST GUI gener-
ation mechanism or MCST adaptaion mechanism are represented as
annexe ???.

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 13 of 81

ne: MileGate 2500
MO

unit-1
MO

unit-2
MO

unit-3
MO

unit-21
MO

.

port-1
MO

port-1
MO

port-32
MO

. . . .

Property:
-label

- alarm serverty
. . .

Property:
-VLAN priority mapping

-software on unit
. . .

Property:
-rate limiter

- operation status
. . ..

 © KEYMILE AG

1.5 Constraints for MileGate

Due to the fact that MileGate is running embedded, there are some constraints
we have to mention for the definition of our services.

1.5.1 Processor

The actual management system (MCST) generates a lot of request towards
the management interface. Amelioration is possible but not vital.
Performance limitations rather have to be considered at the implementation of
the HTML Service due to the generation of the HTML files and its storage uses
much more system resources.

CPU: PowerPC 603E (~400MHz)

1.5.2 Memory

The memory of the MileGate is limited and has to be used with fully aware.
The program itself need to be adapted to the MileGate coding rules.
If its necessary to add images or other graphical elements, they could be
loaded over the Internet. HTML is pure text and does not use lot of memory.

Core Card: 128MB / 256MB of RAM
128MB Flash Memory (no hard disk drive)

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 14 of 81

 © KEYMILE AG

1.6 Operating mode of MileGate

The operation mode of the MileGate was important for the definition of the in-
terfaces as they all have to communicate with the embedded system.

1.6.1 Communication with the MileGate

For the communication with the MileGate, each management interface has an-
other manner to communicate. As example, the communication over USB has
not lot of similarities with the communication over a command line client. An
very important and for all the interfaces common part is the use of KEYMILE's
proprietary KOAP messages. This part of the communication is described in
this section.

1.6.1.1 Client-Server system

The communication with the management interface uses a proprietary XML
protocol named KOAP which is transported over a proprietary message trans-
port protocol.
It is a matter of a simple request-response system. The client is allowed to
send request and the server (MileGate management interface) returns a re-
sponse with the an indication whether the request was successful or had an
error.
The KOAP protocol additionally offers the possibilities to send attachments.
All the services handling the configuration must access this management in-
terface.

1.6.1.2 Format of the requests and responses

The following paragraph shows how the transmitted message should look like.
The actual management interface accepts request which looks as followed:

<?xml version=”1.0” encoding=”utf-8”?>
<request version=”1” seq=”1” destAddr=”/unit-1/port-1”>

<mdomain id=”main”>
<operation seq=”1” name=”setLabel”>

<Label>
<user>User1</user>
<service>Service1</service>
<description>Description1</description>

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 15 of 81

 © KEYMILE AG

</Label>
</operation>

</mdomain>
</request>

Code 8: KOAP request

The request addresses the Management Object Type (MO Type) “/unit-1/port-
1” and the Management Function (MF) “main”. The called function is named
setLabel and requires the shown XML formatting.

For the response we observe the response on the function getLabel because
the function used just before won't deliver any content. The response looks as
followed:

<?xml version=”1.0” encoding=”utf-8”?>
<response version=”1” seq=”1” destAddr=”/unit-1/port-1”>

<mdomain id=”main”>
<operation seq=”1” name=”getLabel”>

<execution status=”success”/>
<Label>

<user>User1</user>
<service>Service1</service>
<description>Description1</description>

</Label>
</operation>

</mdomain>
</request>

Code 9: KOAP response

The requests has the same parameters as the request. Additionally the tag
<execution> with the parameter status=”success” has been added into the
tag <operation>. An unsuccessful response would contain the execution para-
meter status=”proc_error”.
Within the <operation> tag, the values just send before in the setLabel func-
tion were returned.

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 16 of 81

 © KEYMILE AG

2 Introduction into Web Services

Abstract

This chapter introduces the necessary knowledge concerning the Web Service and
its architecture. We also discuss the difference between traditional services and the
Web Service recommended by the World Wide Web Consortium.

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 17 of 81

 © KEYMILE AG

2.1 Traditional web service

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 18 of 81

 © KEYMILE AG

2.2 SOA (Service-Oriented Architecture)

Before we introduce the Web Service Architecture, we need to mention some
basics of the Service Oriented Architecture. This is necessary because the Web
Service Architecture extends the Service Oriented Architecture.

W3C provides the following equation which interconnects the two words:

World Wide Web (WWW) + Service Oriented Architecture (SOA)
= Web Service Architecture

2.2.1 Architecture

The name indicates the basic idea behind this architecture, it is service ori-
ented. We will not describe the SOA in detail, more information can be found
under the references mentioned.

Main advantages of the SOA are that it facilitates manageable growth of enter-
prise systems and can reduce the costs for cooperation between organizations.

As most of the IT infrastructures and its organization have grown with a pil-
lars-like (säulen?) architecture, the changeover to a SOA will be very difficult
and time-consuming.

The following graphic illustrate this problem very well:

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 19 of 81

 © KEYMILE AG

The following illustration shows the famous triangle of Service Oriented Archi-
tectures. Roles are described briefly afterwards.

Service Provider
The service provider publishes the service. A description of the service is
provided. The provider hosts and controls the access to the service.

Service Consumer
A service consumer interacts with the service via a service client. He can find
services by querying the service broker. This role can be driven by an end
user or by another service.

Service Broker (optional)

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 20 of 81

Illustration 10: Before & sfter SOA

Illustration 11: Three roles in SOA

 © KEYMILE AG

The service broker provides the directory service and allows service providers
to publish and service costumer to find services. This role is optional, the ser-
vice can also be found otherwise.

2.2.2 Basic characteristics of a SOA

A good summary of the basic characteristics of a SOA can be found in the
technical library of IBM. The document is a recommendation to improve a Ser-
vice Oriented Architecture and contains inter alia the following principles for a
SOA.2

Guiding principles:
• Reuse, granularity, modularity, composability
• Compliance to standards (both common and industry-specific)
• Services identification and categorization

Specific architectural principles:
• Separation of business logic from the underlying technology
• Single implementation and enterprise-view of components
• Life cycle management
• Efficient use of system resources

2http://www.ibm.com/developerworks/webservices/library/ws-improvesoa/

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 21 of 81

http://www.ibm.com/developerworks/webservices/library/ws-improvesoa/

 © KEYMILE AG

2.3 Web Service Architecture

This chapter introduces the Web Service Architecture with its basic concept.
We also want to introduce here the different organizations and task forces
which standardize the concepts behind this architecture.
As we mentioned before, the Web Service Architecture extends a Service Ori-
ented Architecture.

2.3.1 Definition

The definition of W3 published in the Web Services Architecture Require-
ments:3

« A Web service is a software system identified by a URI [RFC 2396], whose
public interfaces and bindings are defined and described using XML. Its defini-
tion can be discovered by other software systems. These systems may then
interact with the Web service in a manner prescribed by its definition, using
XML based messages conveyed by Internet protocols. »

2.3.2 Basic Concept

The basic components of a Web Service Architecture are:
• Communication
• Service Description
• Directory Service

The W3 recommends for the communication of Web Services the use of SOAP,
its specification defines the XML-based message format and how it is embed-
ded into a transport protocol. SOAP is mostly transported over HTTP but is not
at all dependent on this transport protocol.
WSDL, also XML-based, is used to describe the Web Service.
Directory service specifies a standardized structure for the management of
Web Service metadata. A possible directory service is UDDI. This service,
which corresponds to the Service Broker of the SOA, is optional.

3 Source: http://www.w3.org/TR/wsa-reqs/

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 22 of 81

http://www.w3.org/TR/wsa-reqs/#RFC2396

 © KEYMILE AG

2.3.3 Standardization

W3C4:
Founded in 1994 by Tim Bernes-Lee at the Massachusetts Institute of Techno-
logy, Laboratory for Computer Science (MIT/LCS) with support of the CERN in
Geneva, the DARPA (Defense Advanced Research Project Agency) and the EU
(European Union).
Multiple task forces are engaged in standards for HTML, XML, SOAP and
WSDL. Interesting for the future will be standards as RDF (Resource Descrip-
tion Framework) and OWL (Web Ontology Language) concerning the semantic
web.

OASIS5:
The Organization for the Advancement of Structured Information Standards,
originally founded in 1993 as a cooperation of commercial enterprises, has its
focus on standards of the topic e-business. Beside Web Services they provide
techniques as UDDI, ebXML(electronic business using XML) and WS-
BPEL(Business Process Execution Language).

IETF6:
The Internet Engineering Task Force defines more technique oriented stand-
ards and is therefore less conspicuous on Web Service design tasks. The most
important standards by IETF are TLS (Transport Layer Security), LDAP (Light-
weight Directory Access Protocol) and IPv6 (Internet Protocol version 6).

WS-I7:
Web Service Interoperability Organization does not publish any standards. The
focus lies on the examination of concrete specifications and the implementa-
tion of different producers and guarantee the interoperability of them.
Profiles were defined to describe how to use the implementation of the differ-
ent producers.

4http://www.w3.org
5http://www.oasis-open.org
6http://www.ietf.org
7http://www.ws-i.org

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 23 of 81

http://www.ws-i.org/
http://www.ietf.org/
http://www.oasis-open.org/
http://www.w3.org/

 © KEYMILE AG

3 Traditional web service

Abstract

This chapter continues on the traditional web service introduced before and con-
tains our project side issues “service for HTML generation” and “survey of embed-
ded HTTP servers”.

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 24 of 81

 © KEYMILE AG

3.1 Embedded http server

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 25 of 81

 © KEYMILE AG

3.2 HTML generation service

The objective of this section is according to the project objectives tofind a
good way to generate on the fly HTML pages within the MilGate which is
providing a web browser access.
In this section, the necessary background will be provided, the feasibility stud-
ied and at the end a proposition for the implementation given.
This section provides an abridged version of the annexe ???

3.2.1 Background

It would be interesting to offer a possibility to display and modify the configur-
ation of the MileGate network device for humans. The most simple and stand-
ardized way is to provide the access via a web browser as a lot of other net-
work devices as routers, modems, acces points or switches do.
Our only interface to access the data or configuration parameters is the MileG-
ate Object Model with its proprietary communication protocol.

For further treatment of the data for the presentation layer, we need to know
the overall structure of the configuration (possible parameters) which needs to
be parsed from an XML Schema, the ADF (proprietary AccessPoint Definition
File) or in the future from the description of our Web Service (WSDL File).

3.2.2 Business functions

The aim is to analyze the feasibility of a service on the MileGate which creates
HTML pages on the fly (run-time). It must be possible to change the configur-
ation of the MileGate via an web browser.
It is not possible and not wished to to have the complete information in the
memory because we would create redundancy which is complex to to manage.
It is imaginable to save the navigation structure on the system but all the data
will be requested on use.

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 26 of 81

Illustration 12: System structure

 © KEYMILE AG

The service must be adaptable with a modular structure. Also the presentation
layer and the logic must be separated strictly.

3.2.3 Feasibility study

3.2.3.1 Identify problems for implementation

Problem Description Mitigation

Parsing HTML It is difficult to extract in-
formation from HTML pages
as it doesn't have a well
defined structure.

The parsing of XML is much
easier in C++. It could be a
good solution to use XHTML
instead of HTML.

Memory limitation for com-
plete database. We can
either create a DB for the
service or always request
the wanted parameters.

DB:
+ must get just modified
parameter for regeneration
- memory
Direct output:

+ simpler to implementation
- content of entire page
must be requested on each
modification

Creation of a DB probably
won't be necessary for this
implementation. We create
additional problems caused
by duplicating the data.
Likewise is the implemented
SAX parser on MileGate not
optimal for the creation of a
DB.
In my opinion it's better to
keep the number of request
as small as possible.

Menu structure The menu is complex but
needs to be well arranged at
the same time.

A good technique to use
would be a solution based a
tree menu (example JavaS-
cript) for the navigation
within the nodes and kind of
pop-up menu for the man-
agement functions.

Refresh of navigation menu
on insertion of new unit

The menu must be updated
(rewrite HTML page) if a
new unit is inserted. On the
browser it can be reloaded
automatically with a refresh
timing.

We need to detect the low-
level interrupt!

To find the accurate method
the survey of the MCST will
be helpful.

File transfer on HTML The actual system initiates
file transfer with a tag and
adds the file just behind.
This is possible due to the
protocol is no standardized.

Here we have to study how
to use HTTP/Put in C++

Acknowledge on modifica- If the user modifies a para- We can not send messages

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 27 of 81

 © KEYMILE AG

tion meter, he needs to be sure
that the operation was suc-
cessful.

to the user with HTML (HTTP
Server is between service
and client). The only possib-
ility is to print error mes-
sages on the HTML page
which will be visible on the
next reload.

Config of multiple Managed
Objects (MO's)

The MCST GUI offers the
possibility of configuring
multiple MO's with one ac-
tion.

This is difficult to implement
in HTML, the task needs fur-
ther studies.

Connection Manager (access
the node)

The MCST GUI offers a con-
nection manager which is
user dependent.

The connection parameters
of the users can not be
managed trough the server.
It is possible to use cookies
to save connection paramet-
ers on the users web
browser.

Customizing the GUI / Cus-
tom toolbar

A helpful add-on of the
MCST is the customizable
interface.

It will be very challenging to
implement a customizable
HTML page. The feasibility
and its advantages should
be studied in a further task.
A custom toolbar is rather
conceivable. It must also be
saved on the client machine
with a technologie such as
cookies.

Printing option / Table CSV
export

The MCST GUI offers a
printing option and table ex-
port possibilities for spread-
sheet programs.

Printing in HTML is obtain-
able with a well formated
page or a additional
stylesheet.
The export possibility is
more difficult and probably
not supported in HTML. The
CSV files may need to be
generated within our HTML
Service instead.

Table 13: Problems of HTML service and mitigation

3.2.4 Recommendation for Implementation

This topic contains our recommendation for the implementation of the HTML
Service and an example user interface. The recommendations are based on
the prior studies and converge in the basic structure towards the actual man-
agement system. This was necessary because no deep study on the structure

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 28 of 81

 © KEYMILE AG

of the look and feel was performed and with this, no change can be recom-
mended.
We want a product which is as modular and adaptable as possible. To achieve
this we certainly need a strict separation between logic and presentation.

3.2.4.1 Operation of the HTML Service

At the initiation of the HTML service, the entire navigation structure has to be
generated. The result of this will be accessible by the client after the step 7 of
the Sequence Diagram. The connection itself does not evoke the initiation of
the service, the structure needs to existing already at this point of time.
The following points visualize the basic functionality of the service and de-
scribe how the service can figure out the structure of the node.

Illustration 14: Operation of the HTML Service

It has to be said that the parsing of objects has to be recursive which is not
represented in this flowchart.

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 29 of 81

Detect node (<moType>) with Discover Message

Parse the structure of the AccessPoint Definition File of each group
(mf->group->property: each property gives one page (=menu point))

The Node has to be added to the navigation menu

The Discover Message shows what kind of children <ChildrenList> are plugged
to the MileGate. The childrens are parset one after another.

The children has a <state> tag which indicates if the node is empty or not.

Discover Node

Parse ADF

Generate HTML

Parse Children

Node empty

N
E
X
T
 N

O
D

E

NO

N
E
X
T

C
H

IL
D

YES

 © KEYMILE AG

3.2.4.2 GUI Prototype

The menu is the most important part of the website because it defines the way
we can navigate trough the sites and with this the ease of use. Basically we
have the root node with its units and ports. Further a technique need to be
evaluated to add maximal five additional menus to access the further naviga-
tion structure (Main, Configuration Management, Fault Management, Perform-
ance Management and Status) of each node. Possibilities are a second naviga-
tion frame or a pop-up accessible by the right mouse button.
The following illustration provides a GUI prototype with a second navigation
frame and pull down menus.

Illustration 15: GUI prototype

The website needs to be built with frames. That way we can use one single
menu (left) on every other page. In function of the selection on the left side,
the top menu and its menu points (top) need to change. As described before,
the structure of this menu is defined in the ADF file for any possible kind of
node.
If the user clicks on a navigation point, the real task for the service has to be
performed. As we do not want to save the pages with the parameters any-
were, we have to generate the entire content (exclusive of menus) at this
point of time.

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 30 of 81

send

dynamically

generated

pre- generated

 © KEYMILE AG

Request of content:

This list describes the activities of the program on a request of any content
elements.

1. The possible form fields, check boxes, combo boxes, tables or buttons of
one content frame are defined in the ADF file and need to be parsed.

2. Transformation between ADF XML and HTML/XHTML has to be performed
3. To get the values we have to send KOAP messages with indication which

parameters we would like (in the example case it would be:
request destAddr=”/”, mdomain id=”cfgm”,
operation name=”getPriorityMapping”)

4. The service needs to merge the XHTML code and the parameters
5. Finally the XHTML has to be saved on memory
6. With a proper configuration of the HTTP Server, the file is now accessible

by the user

3.2.4.3 Reaction on changes

The system needs to react to modification automatically. Modifications are
possible on different interfaces such as CLI, MCST, syslog, SNMP and of course
the web interface for this service.
The MileGate generates notification on a change of the configuration. Those
notifications need to be captured by our service and as a consequence, the
new navigation must be generated. This needs to be considered at the con-
ception of the navigation structure.
If a new unit is added or removed, the node needs to be added in the naviga-
tion menu and of course also deleted. In this case, a similar mechanism as the
one described in the under “Operation of the HTML service” has to be per-
formed starting at the added unit instead of the root node.

3.2.4.4 Problems

Additional to the identification of the problems in the point “Feasibility studies”
we list here some very important points for the implementation of the service.

Error Handling:
To announce errors to the user, we can just use the output of the HTML page.
It is possible to generate error pages or to add the error message at any place
of the page. We need to define what will be shown during the generation pro-
cess to give the best feedback to the user.

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 31 of 81

 © KEYMILE AG

Concurrent Problems:
The handling of concurrent access need to be checked to guarantee the func-
tionality. In some cases, the access or the files have to be locked for second-
ary users.

Refresh Problems:
Automatic refresh of the HTML page with a refresh delay could cause some
problems. We also have to pay attention that the caching mechanism of the
browser/website is configured well. We need a very quick refresh time to not
confuse/irritate the user.

Performance Problems:
We saw in the analysis that the embedded system has some limitations such
as the performance. To avoid performance problems, proper testing is neces-
sary.

3.2.5 Conclusion

A service which generates HTML pages on the MileGate is feasible.
The aim (advantage compared to MCST) and the wanted functions of such a
service need to be planed and analysed carefully. Main advantage is that a cli-
ent does not need to install anything. It is also imaginable that browsers on
mobile devices can be used for configuration or supervision.
At my point of view, a customizable user interface or a change of the look-
and-feel could bring some advantages for the use of the interface.
The required time to realize this project is very difficult to estimate at the ac-
tual state because it depends heavily on the desired functionalities.
The survey of the actual management tool (MCST) and its implementation
helped a lot and completed the introduction into the very complex MileGate
system. We feel certain that this analysis will facilitate future tasks and helps
if such a service will be designed.

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 32 of 81

 © KEYMILE AG

4 W3C Web Service Description

Abstract

This chapter introduces the Web Service Description Language WSDL and its struc-
ture. The structure is showed by means of abstracts of the final Web Service De-
scription for the MileGate interface.

For a better understanding, the link between the WSDL and the exchanged SOAP
message has been added.

The complete description can be found as annexe.

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 33 of 81

 © KEYMILE AG

4.1 Introduction

WSDL is an XML language for describing Web Service interfaces. The language
is standardized by the W3C.
The specification of the version 1.1 exists since 2001. The follower version
(2.0) reached the status of a 'W3C Recommendation' in march 2006 but most
of the current Web Services still use the previous version.

The description of such a service is spit into two parties, we have an abstract
and a concrete description. The abstract view focuses the functionality and the
concrete enters more into the technical detail. Thus we have a separation
between the details and the manner our service is offered.

The components of the description are:

Abstract: Operation
Messages Exchange Pattern
Interface

Concrete: Binding
Endpoint
Service

The main difference of WSDL according to other description languages for in-
terfaces (e.g. IDL, Interface Description Language) is that everything is con-
centrated in one file. We are able to communicate with the service just on the
base of the WSDL file. Of course we have also the possibility to write the de-
scription modular (include, import) to provide better legibility and maintainab-
ility.

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 34 of 81

 © KEYMILE AG

4.2 Structure of the description

We want to introduce briefly the elements used to describe the Web Service
and show afterwards a few more details using the description of our interface.
If two elements are used to describe one single element, this is due to the dif-
ferent versions of WSDL. The first element belongs to the version 1.1 and the
second to the standard 2.0.

definitions / description (root element)
This XML element represents the root element of the WSDL file and defines
the different name spaces.

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="mob_mainbase"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:mob_mainbase_xml="http://keymile.com/milegate/ws/mob_mainbase_xml"
 xmlns:soapbind="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:wsman="http://schemas.xmlsoap.org/ws/2005/06/management"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
 targetNamespace="http://www.keymile.com/milegate/ws/mob_mainbase_xml">

Code 16: WSDL definitions

documentation
The section documentation contains a textual annotation to the service.

 <documentation>
 -textual description of Web Service
 -further infos for the use of this service or interface
 -contact person
 </documentation>

Code 17: WSDL documentation

types
Defines the usable data types.

<types>
 <xs:schema
 xmlns="http://www.keymile.com/milegate/ws/mob_mainbase_xml"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:_0="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 targetNamespace="http://www.keymile.com/milegate/ws/mob_mainbase_xml">
 ...
 <xs:element name="Label" type="Label__Type"/>
 <xs:complexType name="Label__Type">
 <xs:sequence>

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 35 of 81

 © KEYMILE AG

 <xs:element name="user">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="63"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="service">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="63"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="description">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="127"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="severity" type="severity__Type"/>
 <xs:simpleType name="severity__Type">
 <xs:restriction base="xs:string">
 <xs:enumeration value="notification"/>
 <xs:enumeration value="cleared"/>
 <xs:enumeration value="indeterminate"/>
 <xs:enumeration value="warning"/>
 <xs:enumeration value="minor"/>
 <xs:enumeration value="major"/>
 <xs:enumeration value="critical"/>
 </xs:restriction>
 </xs:simpleType>
 ...

Code 18: WSDL types

message
This element contains the possible messages and the types which are allowed
to use.

 <!-- WS-Management headers -->
 <message name="ResourceURIMessage">
 <part name="Header" element="wsman:ResourceURI"/>
 </message>
 <message name="SelectorSetMessage">
 <part name="Header" element="wsman:SelectorSet"/>
 </message>

 <!-- WS-Addressing headers -->

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 36 of 81

XMLSchema base data types

 © KEYMILE AG

 <message name="ToMessage">
 <part name="Header" element="wsa:To"/>
 </message>
 <message name="ReplyToMessage">
 <part name="Header" element="wsa:ReplyTo"/>
 </message>
 <message name="ActionMessage">
 <part name="Header" element="wsa:Action"/>
 </message>
 <message name="MessageIDMessage">
 <part name="Header" element="wsa:MessageID"/>
 </message>

 <!-- bodys -->
 <!-- FAULT MESSAGE -->
 <message name="errorMessage">
 <part name="Error" element="mob_mainbase_xml:Fault"/>
 </message>
 ...
 <message name="Discover__Message">
 <part name="Body" element="mob_mainbase_xml:Discover"/>
 </message>
 ...
 <message name="Label__Message">
 <part name="Body" element="mob_mainbase_xml:Label"/>
 </message>
 ...

Code 19: WSDL message

port type / interface
Describes the interfaces and the provided operations on this interface. For
each operation the corresponding input and output messages are listed.

 <portType name="main_base__PortType">
 <!-- MAINBASE PORT TYPES -->
 <operation name="GetLabel__Operation">
 <input message="mob_mainbase_xml:EmptyMessage"/>
 <output message="mob_mainbase_xml:Label__Message"/>
 <fault name="Fault" message="mob_mainbase_xml:errorMessage"/>
 </operation>
 <operation name="SetLabel__Operation">
 <input message="mob_mainbase_xml:Label__Message"/>
 <output message="mob_mainbase_xml:Label__Message"/>
 <fault name="Fault" message="mob_mainbase_xml:errorMessage"/>
 </operation>
 <operation name="GetAlarmSeverity__Operation">
 <input message="mob_mainbase_xml:EmptyMessage"/>
 <output message="mob_mainbase_xml:AlarmSeverity__Message"/>
 <fault name="Fault" message="mob_mainbase_xml:errorMessage"/>
 </operation>

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 37 of 81

Reference to data type (TYPES)

The input message T
(view of Service)

doesn't have any body!

 © KEYMILE AG

 ...
 <operation name="GetDiscover__Operation">
 <input message="mob_mainbase_xml:EmptyMessage"/>
 <output message="mob_mainbase_xml:Discover__Message"/>
 <fault name="Fault" message="mob_mainbase_xml:errorMessage"/>
 </operation>
 ...

Code 20: WSDL portType

binding
With the element binding we declare which transport protocol is used for
which interface. For inputs or outputs of operations we need to assign the
messages to the elements of the transport protocol (for the example SOAP,
this will be SOAP:body or SOAP:header)

 <binding name="main_base__Interface"
type="mob_mainbase_xml:main_base__PortType">

 <soapbind:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

 <!-- MAINBASE BINDING -->
 <operation name="GetLabel__Operation">
 <soapbind:operation

soapAction="http://schemas.xmlsoap.org/ws/2004/09/transfer/Get"/>
 <input>
 <soapbind:header message="mob_mainbase_xml:ResourceURIMessage"

part="Header" use="literal" />
 <soapbind:header message="mob_mainbase_xml:SelectorSetMessage"

part="Header" use="literal" />
 <soapbind:header message="mob_mainbase_xml:ToMessage" part="Head

er" use="literal" />
 <soapbind:header message="mob_mainbase_xml:ReplyToMessage"

part="Header" use="literal" />
 <soapbind:header message="mob_mainbase_xml:ActionMessage"

part="Header" use="literal" />
 <soapbind:header message="mob_mainbase_xml:MessageIDMessage"

part="Header" use="literal" />
 <soapbind:body use="literal"/>
 </input>
 <output>
 <soapbind:header message="mob_mainbase_xml:ResourceURIMessage"

part="Header" use="literal">
 </soapbind:header>
 <soapbind:header message="mob_mainbase_xml:SelectorSetMessage"

part="Header" use="literal" />
 <soapbind:header message="mob_mainbase_xml:ToMessage" part="Head

er" use="literal" />
 <soapbind:header message="mob_mainbase_xml:ReplyToMessage"

part="Header" use="literal" />
 <soapbind:header message="mob_mainbase_xml:ActionMessage"

part="Header" use="literal" />
 <soapbind:header message="MessageIDMessage" part="Header"

use="literal" />
 <soapbind:body use="literal"/>
 </output>

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 38 of 81

Each operation has its
SOAP header and body

Each operation has its
transfer function (soapAction)

Definition of SOAP transport
 protocol and style

 © KEYMILE AG

<fault name="Fault">
 <soapbind:fault use="literal" name="Fault" />
</fault>

 </operation>
 <operation name="SetLabel__Operation">
 <soapbind:operation

soapAction="http://schemas.xmlsoap.org/ws/2004/09/transfer/Set"/>
 <input>
 <soapbind:header message="mob_mainbase_xml:ResourceURIMessage"

part="Header" use="literal" />
 <soapbind:header message="mob_mainbase_xml:SelectorSetMessage"

part="Header" use="literal" />
 <soapbind:header message="mob_mainbase_xml:ToMessage" part="Head

er" use="literal" />
 <soapbind:header message="mob_mainbase_xml:ReplyToMessage"

part="Header" use="literal" />
 <soapbind:header message="mob_mainbase_xml:ActionMessage"

part="Header" use="literal" />
 <soapbind:header message="mob_mainbase_xml:MessageIDMessage"

part="Header" use="literal" />
 <soapbind:body use="literal"/>
 </input>
 <output>
 <soapbind:body use="literal"/>
 </output>
 <fault name="Fault">
 <soapbind:fault use="literal" name="Fault" />
 </fault>
 </operation>

Code 21: WSDL binding

service
Describes where the service is located. 'Services' can be subdivided into 'port/
endpoint' with different addressing parameters. See next paragraph for de-
scription of parameters.

 <service name="SetLabelService">
 <port name="SetLabelPort"

binding="mob_mainbase_xml:main_base__Interface">
 <soapbind:address location="http://localhost:9357/wsman/"/>
 <wsa:EndpointReference name="labelEPR"
 xmlns:wsaw="http://www.w3.org/2006/02/addressing/wsdl">
 <wsa:Address>http://localhost:9357/wsman/</wsa:Address>
 <wsa:ReferenceParameters>
 <wsman:SelectorSet>
 <wsman:Selector name="mf">main</wsman:Selector>
 <wsman:Selector name="property">/Label</wsman:Selector>
 </wsman:SelectorSet>
 <wsman:ResourceURI>/unit-11</wsman:ResourceURI>
 </wsa:ReferenceParameters>
 </wsa:EndpointReference>

Code 22: WSDL service

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 39 of 81

Definition of Service Endpointwith
the addressing parameters

No need for interpretation.Passes to
application as a full XML

 © KEYMILE AG

4.3 SOAP Message

The SOAP message defined in the Web Service Description File helps a lot to
understand the descrtiption.
We are going to represent the SOAP messages for the Set- and GetLabel oper-
ation.

GetLabel SOAP message:

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:mob="http://www.keymile.com/milegate/ws/mob_mainbase_xml"
 xmlns:wsa ="http://schemas.xmlsoap.org/ws/2004/08/addressing"
 xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd">
 <soapenv:Header>
 <wsa:To>http://localhost:9357/man</wsa:To>
 <wsman:ResourceURI>/unit-11</wsman:ResourceURI>
 <wsa:ReplyTo>
 <wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/

role/anonymous</wsa:Address>
 </wsa:ReplyTo>
 <wsman:SelectorSet>
 <wsman:Selector Name="mf">main</wsman:Selector>
 <wsman:Selector Name="property">/Label</wsman:Selector>
 </wsman:SelectorSet>
 <wsa:Action>http://schemas.xmlsoap.org/ws/2004/09/transfer/Get
 </wsa:Action>
 <wsa:MessageID>urn:uuid:d2345623-bc89-4323-9e83-ueldjfued
 </wsa:MessageID>
 </soapenv:Header>
 <soapenv:Body>
 </soapenv:Body>
</soapenv:Envelope>

Code 23: SOAP GetLabel

The input type (view of service) of the GetLabel message (defined in Port-
Types):

<input message="mgws:EmptyMessage"/> <!-- NO BODY -->

SetLabel SOAP message:

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:mob="http://www.keymile.com/milegate/ws/mob_mainbase_xml"
 xmlns:wsa ="http://schemas.xmlsoap.org/ws/2004/08/addressing"
 xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd">
 <soapenv:Header>

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 40 of 81

Addresse

Ressource

Property

Action: Get

 © KEYMILE AG

 <wsa:To>http://localhost:9357/man</wsa:To>
 <wsman:ResourceURI>/unit-11</wsman:ResourceURI>
 <wsa:ReplyTo>
 <wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/

role/anonymous</wsa:Address>
 </wsa:ReplyTo>
 <wsman:SelectorSet>
 <wsman:Selector Name="mf">main</wsman:Selector>
 <wsman:Selector Name="property">/Label</wsman:Selector>
 </wsman:SelectorSet>
 <wsa:Action>http://schemas.xmlsoap.org/ws/2004/09/transfer/Put
 </wsa:Action>
 <wsa:MessageID>urn:uuid:d2345623-bc89-4323-9e83-ueldjfued
 </wsa:MessageID>
 </soapenv:Header>
 <soapenv:Body>
 <mob:Label>
 <mob:user>a</mob:user>
 <mob:service>b</mob:service>
 <mob:description>c</mob:description>
 </mob:Label>
 </soapenv:Body>
</soapenv:Envelope>

Code 24: SOAP SetLabel

The input type (view of service) of the SetLabel message (defined in Port-
Types):

<input message="mob_mainbase_xml:Label__Message"/>

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 41 of 81

The SetLabel has a
body of the typ
'Label__Type'

as input message

Action: Put

 © KEYMILE AG

5 Web Service Concepts

Abstract

There is a huge variety of concepts and standards for Web Services. Concepts are
provided by the World Wide Web Consortium W3C8, OASIS9, Microsoft10, IBM11 and
even more. Some of this concepts overlap.

This chapter discusses the used concepts for our Web Service and provides an se-
lection of other concepts which has been defined during this project as interesting
for the future development of the MileGate Web Service.

Most of these concepts had not been included in the actual Web Service Descrip-
tion (WSDL) for reasons of time constraints. For these concepts interesting points
for KEYMILE are emphasized and commented.

8http://www.w3.org/2002/ws/
9http://www.oasis-open.org/specs/
10http://msdn.microsoft.com/en-us/library/ms951274.aspx
11http://www.ibm.com/developerworks/webservices/standards/

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 42 of 81

http://www.ibm.com/developerworks/webservices/standards/
http://msdn.microsoft.com/en-us/library/ms951274.aspx
http://www.oasis-open.org/specs/
http://www.w3.org/2002/ws/

 © KEYMILE AG

5.1 Addressing

The W3C recommendation Web Service Addressing 1.0 – Core12 of the 9 May
2006 defines the construct of the message addressing properties and the end-
point references.
Other recommendation describes the Web Service Addressing 1.0 – SOAP
Binding13 (9 May 2006), the Web Service Addressing 1.0 – Metadata14 (4
September 2007) and the candidate recommendation Web Service Addressing
1.0 – WSDL Binding15 (29 May 2006).

5.1.1 WS-Addressing

This recommendation provides a mechanisms for end-to-end addressing of
messages independent of the transport protocol used.
Addressing properties are, with the use of SOAP, contained in the header
block.

The use of WS-Addressing allows us to address the source and destination en-
dpoint of the system and to provide a identity for the message. Additional we
specifies an action URI which defines the expected semantics.

With the concept of SOAP binding we assign the exchange structure defined by
SOAP and a set of predefined faults.

The WSDL Metadata and WSDL binding indicate if the service is using WS-Ad-
dressing and provides the possibility for different message exchange patterns
such as one-way, request-response, notification and solicit-response for WSDL
1.1 and some more for WSDL 2.0.

5.1.1.1 Endpoint Reference EPR

Endpoint Reference is a concept introduced by WS-Addressing and is used for
the dynamic generation and customization of service endpoints.

12http://www.w3.org/TR/ws-addr-core/
13http://www.w3.org/TR/ws-addr-soap/
14http://www.w3.org/TR/ws-addr-metadata/
15http://www.w3.org/TR/ws-addr-wsdl/

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 43 of 81

http://www.w3.org/TR/ws-addr-wsdl/
http://www.w3.org/TR/ws-addr-metadata/
http://www.w3.org/TR/ws-addr-soap/
http://www.w3.org/TR/ws-addr-core/

 © KEYMILE AG

As we have in our system endpoints that can change with the modification of
the configuration or with the insertion of new hardware, we need a mechanism
to indicate the new endpoint.
Possibilities are an additional Web Service (Endpoint Manager) which provides
information about the addressable endpoints. Such a Web Service is described
on the apache website
(http://svn.apache.org/repos/asf/cxf/trunk/testutils/src/main/resources/wsdl/locat-
or.wsdl).
Other approaches are described later in the chapter 'WS-Distributed Manage-
ment' under 'Advertisement' and 'Discovery'.

5.1.2 WS-Management

The final specification WS-Management was published by the Distributed Man-
agement Task Force DMTF the 02 December 2008. It provides a common way
for systems to access and exchange management information.

The default addressing model uses a representation of an EPR that is a tuple
of the following SOAP headers:16

• wsa:To (required): the transport address of the service
• wsman:ResourceURI (required if the default addressing model is used):

the URI of the resource class representation or instance representation
• wsman:SelectorSet (optional): identifies or "selects" the resource in-

stance to be accessed if more than one instance of a resource class exists

The ResourceURI is in our case used to address the Managed Object (e.g.
/unit-11) and the SelectorSet specifies the management function (mf, e.g.
Main) and the property (e.g. Label).

5.1.3 WS-Transfer

WS-Management has the status of W3C Member Submission (27 September
2006). The latest working draft is dated the 25 June 2009.

We use just the defined resource operations such as get and put with the URI:

16http://www.dmtf.org/standards/published_documents/DSP0226_1.0.0.pdf (5.1.2 Default Addressing Model)

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 44 of 81

http://www.dmtf.org/standards/published_documents/DSP0226_1.0.0.pdf
http://svn.apache.org/repos/asf/cxf/trunk/testutils/src/main/resources/wsdl/locator.wsdl
http://svn.apache.org/repos/asf/cxf/trunk/testutils/src/main/resources/wsdl/locator.wsdl

 © KEYMILE AG

http://schemas.xmlsoap.org/ws/2004/09/transfer/Get
http://schemas.xmlsoap.org/ws/2004/09/transfer/Put

REMARK: In the latest working draft the URI changed to:

http://www.w3.org/2009/06/ws-tra/Get
http://www.w3.org/2009/06/ws-tra/Put

Additionally the resource operations delete and create are possible.

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 45 of 81

http://www.w3.org/2009/06/ws-tra/Put
http://www.w3.org/2009/06/ws-tra/Get
http://schemas.xmlsoap.org/ws/2004/09/transfer/Put
http://schemas.xmlsoap.org/ws/2004/09/transfer/Get

 © KEYMILE AG

5.2 Resource

The concepts in this chapter describe the handling of resources with Web Ser-
vices. Following specifications are published by OASIS, please pay attention on
the status of the recommendation which is indicated at the beginning of each
description.

5.2.1 WS-Discovery

WS-Discovery is not standardized yet and has the state of an OASIS Commit-
tee Specification 01 since 14 May 2009.17

It defines a discovery protocol to locate services. It is often used to discover
structures like LDAP (Lightweight Directory Access Protocol) or similar direct-
ories.

As our system contains one single service per MileGate, we have no need of a
discovery at this level. Discovery could be used to figure out the complete in-
frastructure (ensemble of MileGates). Actually, this function is not needed be-
cause the system architecture and its addressing is designed in advance and
won't change over the time.

CAN'T BE USED TO DISCOVER THE MANAGED OBJECTS (RESOURCE) OF THE
MILEGATE!

5.2.2 WS-Resource

WS-Resource became a OASIS Standard the 1 April 2006.

The goal of WS-Resource is to standardize the terminology and concepts
needed to express the relationship between Web services and resources.18

A resource is represented by an endpoint reference (EPR) and addressed using
the WS-Addressing concept:

17http://docs.oasis-open.org/ws-dd/discovery/1.1/wsdd-discovery-1.1-spec.pdf
18http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf (1.1 Goals and Requirements)

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 46 of 81

http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-dd/discovery/1.1/wsdd-discovery-1.1-spec.pdf

 © KEYMILE AG

<wsa:EndpointReference>
 <wsa:Address>http://192.168.0.1?res=RessourceName</wsa:Address>
 …
</wsa:EndpointReference>

The SOAP binding would look as followed:

<wsa:To>http://192.168.0.1?res=RessourceName</wsa:To>

5.2.2.1 WS-Resource Properties19

WS-Resource Properties also became a OASIS Standard the 1 April 2006.

The goal of WS-ResourceProperties is to standardize the terminology, con-
cepts, operations, WSDL and XML needed to express the resource properties
projection, its association with the Web service interface, and the messages
defining the query and update capability against the properties of a WS-Re-
source.

Resource Property:
A resource property is a piece of information defined as part of the state mod-
el of a WS-Resource.

Resource Properties Document:
The XML document representing a logical composition of resource property
elements. The resource properties document defines a particular view or pro-
jection of the state data implemented by the WS-Resource.

5.2.2.2 Comment

This concepts offer another manner for addressing the MILEGATE property
(e.g. Label) and its parameters (e.g. Label1).

• With GetMultipleResourceProperties we can get a selection of Resource
Properties. This mechanism offers the possibility of a customized request
according to the preferences of the client. The advantage is that we do not
have to request multiple operations and filter the content afterwards.

• With QueryResourceProperties we are able to query a Resource Properties
document of a WS-Resource using a query expression such as XPath.

• The manageability of the system could be improved due to the dynamic
add/delete of Resource Properties into the Resource Property document.

19http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf (1.1 and 2)

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 47 of 81

http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf

 © KEYMILE AG

(InsertResourceProperties, UpdateResourceProperties, DeleteResource-
Properties)

DOES NOT HELP TO FIGURE OUT WHICH ENDPOINT IS SUPPORTED BY WHICH
OPERATION!

5.2.3 WS-Notification

WS-Notification contains the standard WS-Base Notification, WS-Brokered No-
tification and WS-Topics.

5.2.3.1 WS-Base Notification

WS-Base Notification became a OASIS Standard the 1 October 2006.

The goal of WS-BaseNotification is to standardize the terminology, concepts,
operations, WSDL and XML needed to express the basic roles involved in Web
services publish and subscribe for notification message exchange.20

A notify message containing one or more notifications should look as fol-
lowed:21

…
<wsnt:Notify>
 <wsnt:NotificationMessage>
 <wsnt:SubscriptionReference>
 wsa:EndpointReferenceType
 </wsnt:SubscriptionReference> ?
 <wsnt:Topic Dialect="xsd:anyURI">
 {any} ?
 </wsnt:Topic>?
 <wsnt:ProducerReference>
 wsa:EndpointReferenceType
 </wsnt:ProducerReference> ?
 <wsnt:Message>
 {any}
 </wsnt:Message>
 </wsnt:NotificationMessage> +
 {any} *

20http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf (1.1 Goals and Requirements)
21http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf (3.2 Notify)

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 48 of 81

http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf

 © KEYMILE AG

</wsnt:Notify>
…

The notify message just before is transported as content of the SOAP body.
Addressing for the notification (in SOAP header) by definition is following WS-
Addressing action.

 <wsa:Action>
 http://docs.oasis-open.org/wsn/bw-2/NotificationConsumer/Notify
</wsa:Action>

The concept for the management of the subscription is also defined in WS-
Base Notification.

5.2.3.2 WS-Brokered Notification

WS-Topics became a OASIS Standard the 1 October 2006.

The goal of WS-BrokeredNotification is to standardize message exchanges in-
volved in Web services publish and subscribe of a message broker.22

5.2.3.3 WS-Topics

WS-Topics became a OASIS Standard the 1 October 2006.

The goal of the WS-Topics specification is to define a mechanism to organize
and categorize items of interest for subscription known as “topics”. It defines
a set of topic expression dialects that can be used as subscription expressions
in subscribe request messages and other parts of the WS-Notification sys-
tem.23

Topic:
A Topic is the concept used to categorize Notifications and their related Noti-
fication schemas.

Topic Tree:
A hierarchical grouping of Topics.

22http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf (1.1 Goals and Requirements)
23http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf (1.1 Goals and Requirements)

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 49 of 81

http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf

 © KEYMILE AG

5.2.3.4 Comment

The mechanism described in this standards is basically similar to the notifica-
tion system used in the MileGate. The requirement for the notifications used
for the logbook could be fulfilled with this technique without the need for a
continuous polling. (Pull-style notifications also possible)
Information in the logbook subcategories alarm, configuration changes, ses-
sion login, equipment changes and events can be made accessible in a more
particular way for other purposes.
It is recommended to allow authorization policies for topics.

• The hierarchical structure of the topics allows a very targeted subscription
for notifications.

• Management of the topics stays handy, also for large topic sets.
• The client can regroup the readout of notification according to his belong-

ings and anywhere in his system.

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 50 of 81

 © KEYMILE AG

5.3 Management

We already saw the WS-Management specification in the chapter Addressing.
The idea behind this separation is that we just used WS-Management for ad-
dressing purposes.
In this chapter we describe functionality that goes much further. A complex
concept is represented which interconnects multiple standards described be-
fore.

5.3.1 WS-Distributed Management

The standard WS-Distributed Management contains two parties.
Management using Web Services (MUWS 1.0) became a OASIS Standard the 9
March 2005 and Management of Web Services (MOWS 1.0) on 1 August 2006.
We will discuss here just the first standard. The second standard (MOWS 1.0)
will be more interesting for the implementation of the management interface
and not for the definition of the interface.

5.3.1.1 Management Using Web Services

The following paragraph defines some necessary terminology defined in the
MUWS specification.

Manageable resource:
A resource capable of supporting one or more standard manageability capabil-
ities.

Capability:
A group of properties, operations, events and metadata, associated with iden-
tifiable semantics and information and exhibiting specific behaviors.

Manageability capability:
A capability associated with one or more management domains.

Manageability endpoint:
A Web service endpoint associated with and providing access to a manageable
resource.

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 51 of 81

 © KEYMILE AG

Management domain:
An area of knowledge relative to providing control over, and information
about, the behavior, health, lifecycle, etc. of manageable resources.

Management Using Web Services (MUWS) enables management of distributed
information technology (IT) resources using Web services. Many distributed IT
resources use different management interfaces. By leveraging Web service
technology, MUWS enables easier and more efficient management of IT re-
sources.24

MUWS is based on number of other specifications such as WS-Addressing,
Metadata, Endpoint Reference, WS-Notification, WS-Topics, WS-Discovery,
WS-Resource Properties which have been introduced before.

Manageability capabilities

The following capabilities are summarized from the documents MUWS part 125

(Chapter 3) & 226 (Chapter 2 and 3) mentioned as reference. The capabilities
describe how the service can be used.

Operations
The operations in the MUWS specification correspond to those used in WSDL
(portType element containing operation element with a description and any
relevant metadata).

Properties
The properties of a manageable resource use the mechanism defined in WS-
Resource Properties and its resource properties document.

Events
Event types are defined by using 'topic' and 'message content' elements. The
information in the second element is transmitted as a part of the notification
message (defined by WS-Base Notification).
To support event classification, different SituationCategoryTypes (element)
such as AvailabilitySituation, CapabilitySituation, ConfigurationSituation and so
on were defined (full list on page 9 of MUWS part 2). The aim of this classifica-
tion is that the event consumer can comprehend the situation according the
ability of the event source.
For each capability, topics are defined to link the capability with the event.

Metadata

24http://docs.oasis-open.org/wsdm/wsdm-muws1-1.1-spec-os-01.pdf (1 Introduction)
25http://docs.oasis-open.org/wsdm/wsdm-muws1-1.1-spec-os-01.pdf
26http://docs.oasis-open.org/wsdm/wsdm-muws2-1.1-spec-os-01.pdf

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 52 of 81

http://docs.oasis-open.org/wsdm/wsdm-muws2-1.1-spec-os-01.pdf
http://docs.oasis-open.org/wsdm/wsdm-muws1-1.1-spec-os-01.pdf
http://docs.oasis-open.org/wsdm/wsdm-muws1-1.1-spec-os-01.pdf

 © KEYMILE AG

We can define metadata on properties and operations. The aim of this is to
provide information available in WSDL and WS-Resource Properties to a tool or
management application.
With the metadata element 'ValidWhile', we are able to block the invocation of
an operation if certain properties do not have certain values.

Operational Status
With the capability operational status we have can simply represent if a re-
source is 'Available', 'PartiallyAvailable', 'Unavailable' or 'Unknown'.
This function can be implemented using the notification on property value
change provided by WS-Resource Properties.

Management -related capabilities

The function of a management-related capability is related to the management
of a resource, but it is not necessarily offered directly by a manageability end-
point of a resource. For example, the capability to help a manageability con-
sumer discover a new manageable resource can be provided by a registry in-
stead of by a management representation of the resource. As another ex-
ample, a manageable resource may provide information about relationships in
which it participates.

The following capabilities are summarized from the documents MUWS 2
(Chapter 4 and 5) mentioned as reference.

Relationships
The relationship defines the association between resources and the role of
each participant. Interesting point for the MileGate system is that we can
define a common AccessEndpoint for the participants of a relationship. A rela-
tionship may have its own properties, operations, events, lifecycles or can
provide information about the relationship.
Another good point is that with the definition of relationships we enable the
discovery of Endpoint References for other resource that participates in the re-
lationship.

Advertisement
This capability provides a mechanisms to notify the creation or destruction of
manageable resources. The following four new event topics are defined by Ad-
vertisement:

- ManageabilityEndpointCreation
- ManageableResourceCreation
- ManageabilityEndpointDestruction
- ManageableResourceDestruction

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 53 of 81

 © KEYMILE AG

On the creation of a new Endpoint, the most interesting case for the MileGate
system, an associated 'CreationNotification' message (WS-Notification) deliv-
ers the new Endpoint Reference.

Discovery

The goal of discovery is to obtain the EPR of a manageability endpoint.27

The advertisement capability, just introduced before, provides one way to
provide a discovery mechanisms via events.
Another possibility is the discovery mechanisms via relationships described in
under 'Relationships'.

A last possibility, perhaps also interesting for the MileGate, is the discovery of
manageable resource by invoking a query on a registry. It is recommended to
use a registry of the type specified by the WS-Service Group28 specification.
Therefore MileGate should provide such a registry.

5.3.1.2 Comment

This specification defines how the different concepts can be combined together
and all the advantages from each of them can enhance the usability of the
complete system. We have plenty of good mechanisms for the dissolving of
the problems we get if we pass from a proprietary to a standardized solution
using Web Services.
It follows a short recapitulation of the advantages.

Resource Properties
• customized requests
• query resource properties using XPath
• better manageability on changes of the resource properties

Notification/Topic
• similarity to actual notification system
• hierarchical structure of topics
• subscription

Metadata
• constraints for the invocation of operations

27http://docs.oasis-open.org/wsdm/wsdm-muws2-1.1-spec-os-01.pdf (5 Discovery)
28http://docs.oasis-open.org/wsrf/wsrf-ws_service_group-1.2-spec-os.pdf

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 54 of 81

http://docs.oasis-open.org/wsrf/wsrf-ws_service_group-1.2-spec-os.pdf
http://docs.oasis-open.org/wsdm/wsdm-muws2-1.1-spec-os-01.pdf

 © KEYMILE AG

• machine readable

Operational status
• knowledge if resource is available

Relationships
• common AccessEndpoint in relationship
• discovery of Endpoint References in relationship

Advertisement
• discovery of Endpoint References with creation notifications

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 55 of 81

 © KEYMILE AG

5.4 Conclusion

The study of the SOA was very interesting and helped to understand the ad-
vancement of the Internet in direction of Web Services. Not all the ideas are
implementable for the MileGate because we have existing constraints and
what is even more important, an existing and functional system. As all the
transformations towards an service oriented architecture, the process will be
very time-consuming.

Web Services architectures provides some exceptional concepts which offers a
mass of new possibilities. Here a careful study of the requirements and on the
functionalities wanted to offer had to be performed.
Attention have to be paid on the level of complexity of the system to not set
limits for the implementation on the client side but also for not defining it
vague or ambiguous.

"Things should be made as simple as possible, but no simpler."
Quote Albert Einstein

The endpoints of the Web Service and its management pose some problems
which could be solved with the different techniques described. The easiest way
to manage them is to use the endpoint references EPR by programming on the
client side. A adapted version of the 'discover' (MileGate operation) which fur-
nishes just the required information for the Web Service would be more effi-
cient and would additionally allow to hide the infrastructure from the client.

The actual MileGate notifications, which follows the same principles as WS-
Notification, should be translated into Web Service notifications and described
with meta description to make it machine-readable.

For purposes of flexibility, the direct access of the management functions (not
over two parameters, e.g. main/label). It will be easier to define constraints
for the invocation of operations which are related to the access address (EPR).
The further idea is that we need to ensure that just possible functions can be
invoked. Possibilities therefore are the simple response with an error, the 'Val-
idWhile' provided by WS-A Metadata or the use of relation according to WS-
Distributed Management.

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 56 of 81

 © KEYMILE AG

6 Web Service Tools

Abstract

WHAT IS IN THIS CHAPTER?

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 57 of 81

 © KEYMILE AG

6.1 Clients Tools

6.1.1 Interoperability common problems between web services and SOAP protocol

6.1.2 Web Services Interoperability Organization (WS►I)

6.1.3 Presentation of a few frameworks

6.1.4 Framework evaluation

6.1.5 Tests tools

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 58 of 81

 © KEYMILE AG

7 Realization of the Prototype

Abstract

This chapter describes the functionality of our prototype and describes the different
stages the information runs trough.

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 59 of 81

 © KEYMILE AG

7.1 Flow of information

For the complete flow of information we have to remember the Illustration 4
”Approach with web service” (from chapter 1 paragraph “Work to perform”)
which shows a global view of the system. The different steps are here de-
scribed briefly.
Additional information can be found under the mentioned references.

Illustration 4 ”Approach with web service” from chapter 1 paragraph “Work to
perform”

7.1.1 SFD to WSDL

The description of the Web Service needs finally be generated automatically
from files called “SFD”. Those files are provided by the system and contain al-
most all the necessary information for our description.
The description (WSDL file) we provided, is written manually and considers
just one single interface. The complete system has more than hundred inter-
faces where the operations need to be accessible.
As the SFD file is written in XML, a transformation stylesheet (XSLT) will be
used. The transformation from SFD to the Accesspoint Definition File ADF is
already made with such a transformation file and builds the basis for the
transformation to WSDL.
For this project we had to modify an existing XSLT according to the described
Web Service. SOAP headers (definition and binding to message) for manage-
ment and addressing had to be added. Fault type, integration into interface
and fault message added and the SOAP action had to be changed.

Complete XSLT provided as annex.

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 60 of 81

1

1

2 3
4

5

 © KEYMILE AG

7.1.2 WSDL to Code & SOAP

The generation of the code is the job of the frame-
work. Almost every conventional programming
language provides at least one framework.
With the import of the WSDL-file, the operations
defined in the description were made accessible
for the programmer.

Generation of the SOAP messages is depending on
the programming language but the skeleton is
provided in the description.

On the right hand side we can see the automatic-
ally generated tree of the program SOAPui.
The interface (wsdl:portType) containing all the
operations (wsdl:operation) defined in the WSDL
file.
The SOAP request contains the defined message
elements of the selected operation as header or
body content.

Additional information under Web Service Client.

7.1.3 HTTP Server

The task of the HTTP Server is to extract the payload of an HTTP request and
deliver it to the system.

Baracuda sourcecode under NDA-licence.

7.1.4 SOAP to KOAP

We have a SOAP request arriving at the MileGate which needs to be answered
by the system. The only interface to the embedded system needs KOAP re-
quests (see Code 12: KOAP request) which have exactly the same body as our
SOAP requests.
A simple DOM parser identifies the addressed unit and function and changes
the syntax of the message (SOAP to KOAP and vice versa).

Source code under publishing restriction.

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 61 of 81

Illustration 25: SOAPui stubs

2

4

3

 © KEYMILE AG

7.1.5 KOAP to C++

The invocation of the C++ routines is used for all different kinds of configura-
tion services. Web Service can use the same manner as we changed before
from SOAP to KOAP messages.
The architecture of the MileGate is hidden behind the KOAP message.

Source code under publishing restriction.

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 62 of 81

5

 © KEYMILE AG

7.2 SOAP message structure

1.1
…
1.2
…
1.3
…

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 63 of 81

 © KEYMILE AG

7.3 WSDL File generation

2.1
…
2.2
…
2.3
…

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 64 of 81

 © KEYMILE AG

8 Tests

Abstract

This chapter contains the definition of the tests and the validation of the functionality
of the prototype.

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 65 of 81

 © KEYMILE AG

8.1 Tests Definition

This section contains the definitions for the tests we want to perform on the
prototype.

8.1.1 Verification of the Web Service

The verification task for the Web Service is very important but in this case also
quite difficult because the reaction of the MileGate system is predefined. We
grouped the verification into two major parties. The first part is the validation
which checks if the descriptions follow the standards.
The second part contains some basic tests of the system. Here we have to be
aware that for lot of tests the existing software is involved which will not be
modified at the moment.

8.1.1.1 Validation

For the validation of the Web Service, the most important point is that the de-
scription follows the rules defined for WDSL. With the XSLT we generate at the
moment just the description for the definition WSDL 1.1. We wont validate
WSDL 2.0 because the SOAP to KOAP translation in the MileGate does not sup-
port WSDL 2.0.

Also the SOAP messages need to be in accordance with the standard. This is
difficult to test at the moment because the final SOAP request is generated by
the client framework.

The header fields are defined according to the used standards (WS-Manage-
ment and WS-Addressing) and included automatically into the SOAP message
skeleton. The used Namespaces of SOAP and for the two Web Service con-
cepts are also written automatically into the message.
For the body part of the SOAP message, the elements defined in the WSDL are
included.

The validation of the Web Service functions will be performed with SOAPui
2.5.1, a Web Service Testing tool developed by eviware.
The following example shows the automatic generated SOAP message of the
program SOAPui29 (Web Service Testing Tool) of the operation 'SetLabel__op-
eration' defined in the WSDL file. The addressing parameters are missing be-
cause the endpoint reference need to be selected by programming.

29http://www.soapui.org

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 66 of 81

 © KEYMILE AG

<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
 xmlns:add="http://schemas.xmlsoap.org/ws/2004/08/addressing"
 xmlns:man="http://schemas.xmlsoap.org/ws/2005/06/management"
 xmlns:mob="http://www.keymile.com/milegate/ws/mob_mainbase_xml">
 <soap:Header>
 <add:MessageID/>
 <add:Action/>
 <add:ReplyTo/>
 <add:To/>
 <man:SelectorSet/>
 <man:ResourceURI/>
 </soap:Header>
 <soap:Body>
 <mob:Label>
 <mob:user>?</mob:user>
 <mob:service>?</mob:service>
 <mob:description>?</mob:description>
 </mob:Label>
 </soap:Body>
</soap:Envelope>

Code 26: SOAPui skeleton

Defined endpoint reference in the WSDL file:

<wsa:EndpointReference name="labelEPR"
 xmlns:wsaw="http://www.w3.org/2006/02/addressing/wsdl">
 <wsa:Address>http://localhost:9357/wsman/</wsa:Address>
 <wsa:ReferenceParameters>
 <wsman:SelectorSet>
 <wsman:Selector name="mf">main</wsman:Selector>
 <wsman:Selector name="property">/Label</wsman:Selector>
 </wsman:SelectorSet>
 <wsman:ResourceURI>/unit-11</wsman:ResourceURI>
 </wsa:ReferenceParameters>
</wsa:EndpointReference>

Code 27: WSDL endpoint reference

With the parameters from the endpoint reference the request looks as fol-
lowed (the EPR is added in the framework):

<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
 xmlns:add="http://schemas.xmlsoap.org/ws/2004/08/addressing"
 xmlns:man="http://schemas.xmlsoap.org/ws/2005/06/management"
 xmlns:mob="http://www.keymile.com/milegate/ws/mob_mainbase_xml">
 <soap:Header>
 <add:MessageID>urn:uuid:d2345623-bc89-4323-9e83-ueldjfued</add:MessageID>
 <add:Action>http://schemas.xmlsoap.org/ws/2004/09/transfer/Get
 </add:Action>
 <add:ReplyTo>
 <add:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role

/anonymous</add:Address>

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 67 of 81

 © KEYMILE AG

 </add:ReplyTo>
 <add:To>http://localhost:9357/man</add:To>
 <man:SelectorSet>
 <man:Selector name="mf">main</man:Selector>
 <man:Selector name="property">/Label</man:Selector>
 </man:SelectorSet>
 <man:ResourceURI>/unit-12</man:ResourceURI>
 </soap:Header>
 <soap:Body>
 <mob:Label>
 <mob:user>?</mob:user>
 <mob:service>?</mob:service>
 <mob:description>?</mob:description>
 </mob:Label>
 </soap:Body>
</soap:Envelope>

Code 28: merged SOAP request

- SelectorSet and ResourceURI are specified in endpoint reference EPR
- Action is specified in the <wsdl:operation>
- MessageID and ReplyTo must be added with the framework

8.1.1.2 Testing

The testing does not completely verify if the Web Services is functioning per-
fectly. Testing of the function has to be verified with a framework. The aim of
this part is to document the reactions on certain requests and to suggest some
modifications for the actual implementation.

We want to check the reaction on malformed addressing (unit, mf, property),
malformed format of the body and of course also the reaction on a well formed
request. Additionally we want to check:

- Same MessageID
- No address
- Malformed ResourceURI (unit)
- Malformed Selector (mf and property)
- Malformed SOAP body

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 68 of 81

from EPR

 © KEYMILE AG

8.2 Validation of performed tests

This section contains the validation of the tests we performed on the proto-
type.

8.2.1 Validation of files / messages

The validation of the WSDL files was performed with the “<oXygen/> XML Ed-
itor 8.2”.
The manual described WSDL file MILEGATE.wsdl and the generated (XSLT) file
mob_mainbase_xml.wsdl and mob_mainequipment.wsdl had been validated
for WSDL 1.1 and checked if the XML is wellformed with oXygen.

All this tree files are have the result:

WSDL 1.1 validation successful

The exchanged SOAP messages has been checked if they are wellforemed
and correspond to the XML schema (http://schemas.xmlsoap.org/soap/envel-
ope) of SOAP 1.1. This verification has been made for all the SOAP messages
(request and response) described in this chapter.

SOAP 1.1 check successful

8.2.2 Testing the response of the MileGate:

The first test is the confirmation of the functionality based on a well-formed
soap request. Later we observe the reaction on malformed requests and make
some suggestions.
As described in the definition of the test, the SOAP request is just partially
generated by SOAPui. The endpoint references were added manually.

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 69 of 81

 © KEYMILE AG

8.2.2.1 Well-formed request

Request (GetLabel) sent with SOAPui:

<!--

 GET LABEL

-->
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:mob="http://www.keymile.com/milegate/ws/mob_mainbase_xml"
 xmlns:wsa ="http://schemas.xmlsoap.org/ws/2004/08/addressing"
 xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd">
 <soapenv:Header>
 <wsa:To>http://192.168.32.171/wsman</wsa:To>
 <wsman:ResourceURI>/unit-11</wsman:ResourceURI>
 <wsa:ReplyTo>
 <wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/rol

e/anonymous</wsa:Address>
 </wsa:ReplyTo>
 <wsman:SelectorSet>
 <wsman:Selector Name="mf">main</wsman:Selector>
 <wsman:Selector Name="proerty">www.keymile.com/mg/2008/06/MoInfo/

Label</wsman:Selector>
 </wsman:SelectorSet>
 <wsa:Action>http://schemas.xmlsoap.org/ws/2004/09/transfer/Get
 </wsa:Action>
 <wsa:MessageID>urn:uuid:d2345623-bc89-4323-9e83-ueldjfued

</wsa:MessageID>
 </soapenv:Header>
 <soapenv:Body/>
</soapenv:Envelope>

Code 29: GetLabel request

Response of MileGate:

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
 <env:Header>
 <wsa:MessageID>urn:uuid:d2345623-bc89-4323-9e83-ueldjfued-

resp</wsa:MessageID>
 <wsa:RelatesTo>urn:uuid:d2345623-bc89-4323-9e83-ueldj

fued</wsa:RelatesTo>
 <wsa:To>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonym

ous</wsa:To>
 <wsa:Action>http://schemas.xmlsoap.org/ws/2004/09/transfer/GetRe

sponse</wsa:Action>
 </env:Header>

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 70 of 81

 © KEYMILE AG

 <env:Body>
 <Label>
 <user>?</user>
 <service>?</service>
 <description>?</description>
 </Label>
 </env:Body>
</env:Envelope>

Code 30: GetLabel response

Request (SetLabel) sent with SOAPui:

<!--

 SET LABEL

-->
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:mob="http://www.keymile.com/milegate/ws/mob_mainbase_xml"
 xmlns:wsa ="http://schemas.xmlsoap.org/ws/2004/08/addressing"
 xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd">
 <soapenv:Header>
 <wsa:To>http://192.168.32.171/wsman</wsa:To>
 <wsman:ResourceURI>/unit-11</wsman:ResourceURI>
 <wsa:ReplyTo>
 <wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/rol

e/anonymous</wsa:Address>
 </wsa:ReplyTo>
 <wsman:SelectorSet>
 <wsman:Selector Name="mf">main</wsman:Selector>
 <wsman:Selector Name="property">

www.keymile.com/mg/2008/06/MoInfo/Label</wsman:Selector>
 </wsman:SelectorSet>
 <wsa:Action>http://schemas.xmlsoap.org/ws/2004/09/transfer/Put
 </wsa:Action>
 <wsa:MessageID>urn:uuid:d2345623-bc89-4323-9e83-ueldjfued
 </wsa:MessageID>
 </soapenv:Header>
 <soapenv:Body>
 <mob:Label>
 <mob:user>user</mob:user>
 <mob:service>service</mob:service>
 <mob:description>description</mob:description>
 </mob:Label>
 </soapenv:Body>
</soapenv:Envelope>

Code 31: SetLabel request

Response of MileGate:

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 71 of 81

 © KEYMILE AG

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
 <env:Header>
 <wsa:MessageID>urn:uuid:d2345623-bc89-4323-9e83-ueldjfued-resp
 </wsa:MessageID>
 <wsa:RelatesTo>urn:uuid:d2345623-bc89-4323-9e83-ueldjfued
 </wsa:RelatesTo>
 <wsa:To>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonym

ous</wsa:To>
 <wsa:Action>http://schemas.xmlsoap.org/ws/2004/09/transfer/PutRe

sponse</wsa:Action>
 </env:Header>
 <env:Body></env:Body>
</env:Envelope>

Code 32: SetLabel response

If we send the first request another time, we get the new values from the
“SetLabel” request:

 ...
 <env:Body>
 <Label>
 <user>user</user>
 <service>service</service>
 <description>description</description>
 </Label>
 </env:Body>
 …

Code 33: new GetLabel response

Comment:
The request has some problems if the comment at the beginning of the re-
quest is removed. This error is lied to problems of the HTTP server implement-
ation which has difficulties with the handling of too small requests. Will be
solved on the next version of the HTTP server on the MileGate.

All the requests were replied successful and in a response time of between
7ms and 24ms (10 tries).

Validation successful

8.2.2.2 Malformed request

Same MessageID

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 72 of 81

 © KEYMILE AG

The system does not react on the message identities, it just adds the string “-
resp” to the response. It is basically the job of the client programmer to en-
sure that the ID is unique.
A check mechanism with timer would be possible on server side which gener-
ates the predefined WS-Addressing fault wsa:DuplicateMessageID.

No address
The system does not react on a missing or mismatching address (wsa:To) in
the SOAP message. This is field is actually not necessary because the address
on the HTTP layer is defined with the service declaration of the interface. The
principal aim of this field is to allow the forwarding of the message to another
system endpoint.
If this will be implemented in the future, the match of the wsa:To and the loc-
al address should be verified. In case of success, the request should be
treated, otherwise it should be forwarded or an wsa:MissingAddressInEPR re-
turned.

Malformed ResourceURI (unit)
The system responds with the fault “Operation not found”

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
 <env:Body>
 <env:Fault>
 <env:Code>
 <env:Value>env:Sender</env:Value>
 </env:Code>
 <env:Reason>
 <env:Text xml:lang="en">

EXTERNAL.PLATFORM.MOB.OPERATION_NOT_FOUND</env:Text>
 </env:Reason>
 </env:Fault>
 </env:Body>
</env:Envelope>

Code 34: Response on malformed ResourceURI

This reaction provides the programmer the information that something with
the addressing went wrong. The wanted function is not available for this re-
source. We suggest either to indicate the unavailability of the operation for
this resource or to use the predefined wsa:InvalidEPR to keep it general.

Malformed Selector (mf and property)
The reaction of the system is for both selectors identically to the malformed
ReourceURI (EXTERNAL.PLATFORM.MOB.OPERATION_NOT_FOUND).
Here it is also possible to return an wsa:InvalidEPR fault or to use something
more specific as “unsupported/unknown operation”.

Malformed SOAP body

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 73 of 81

 © KEYMILE AG

With a malformed body, means that it does not correspond the WSDL descrip-
tion. Actually, the service does not know the WSDL description but it has all
the information provided in the ADF (accesspoint definition file) and verifies
the syntax there.

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
 <env:Body>
 <env:Fault>
 <env:Code>
 <env:Value>env:Sender</env:Value>
 </env:Code>
 <env:Reason>
 <env:Text xml:lang="en">

EXTERNAL.PLATFORM.MOB.XML_DECODING_ERROR</env:Text>
 </env:Reason>
 </env:Fault>
 </env:Body>
</env:Envelope>

Code 35: Response on malformed SOAP body

The provided error description “xml decoding error” does not clearly indicate
the reason and should be more precise.
We have the same reaction if we delete one element of a valid body.

Remark
Most of the suggestions will be difficult to implement because the system does
not provide further information about the failure. The reaction on “same mes-
sageID” and “No address” can be responded by the service which transform-
ates the SOAP to KOAP messages. The other reactions need provoke a error
message in the base system which gives information about the internal struc-
ture away.

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 74 of 81

 © KEYMILE AG

9 Conclusion

asdfasdf

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 75 of 81

 © KEYMILE AG

10 Annexes

Abstract

In this last chapter you will find the references for this report and the revision history
to comprehend the modifications on the document.

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 76 of 81

 © KEYMILE AG

10.1 References

10.1.1 Keymile:

• Introduction to the MileGate XML - Management Interface
• Web Services Interface for Milegate
• User Guide – MileGate & MCST
• C++ Programming Style Guidelines, Common Part (KEYMILE Confidential)

• C++ Programming Practice Guidelines, Common Part (KEYMILE Confidential)

10.1.2 Protocol:

• WSDL 1.1, www.w3.org/TR/wsdl
• WSDL 2.0, www.w3.org/TR/wsdl20
• SOAP, www.w3.org/TR/soap/
• SOAP 1.2, www.w3.org/TR/soap12/
• XSLT 1.0, www.w3.org/TR/xslt
• XSLT 2.0, www.w3.org/TR/xslt20
• XHTML 1.0, www.w3.org/TR/xhtml1/

10.1.3 Embedded Webserver

• http://www.appwebserver.org/
• http://www.goahead.com/products/webserver/Default.aspx
• http://www.koanlogic.com/klone/features.html
• http://www.allegrosoft.com/rpproduct.html
• http://barracudaserver.com/Barracuda_web_server_SDK.html
• http://www.iniche.com/webport.php

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 77 of 81

http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xslt20
http://www.w3.org/TR/xslt
http://www.w3.org/TR/soap12/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/wsdl

 © KEYMILE AG

10.1.4 Service Oriented Architecture / Web Service Architecture

• W3C documents about Web Service Architecture
http://www.w3.org/2002/ws/arch/

• Reference Model for Service Oriented Architecture 1.0
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf

• Article: What Is Service-Oriented Architecture on webservices.xml.com
http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html

• Book: Service-orientierte Architekturen mit Web Services, Konzepte – Standards – Praxis, Ingo Melzer et al.,
SPEKTRUM Akademischer Verlag

• Book: Web Services. Principles and Technology, Michael P. Papazoglou, PEARSON

10.1.5 Webservice description / concepts

• WS-Addressing, W3C Recommendation
http://www.w3.org/TR/ws-addr-core/

• WS-A: WSDL Binding, W3C Recommendation
http://www.w3.org/TR/ws-addr-wsdl/

• WS-A: SOAP Binding, W3C Recommendation
http://www.w3.org/TR/ws-addr-soap/

• WS-A: Metatdata, W3C Recommendation
http://www.w3.org/TR/ws-addr-metadata/

• WS-Management, Distributed Management Task Force
http://www.dmtf.org/standards/published_documents/DSP0226_1.0.0.pdf

• WS-Transfer, W3C Submission
http://www.w3.org/Submission/WS-Transfer/

• WS-Discovery, OASIS Committee Specification
http://docs.oasis-open.org/ws-dd/discovery/1.1/wsdd-discovery-1.1-spec.pdf

• WS-Base Notification, OASIS Standard

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 78 of 81

http://docs.oasis-open.org/ws-dd/discovery/1.1/wsdd-discovery-1.1-spec.pdf
http://www.w3.org/Submission/WS-Transfer/
http://www.dmtf.org/standards/published_documents/DSP0226_1.0.0.pdf
http://www.w3.org/TR/ws-addr-metadata/
http://www.w3.org/TR/ws-addr-soap/
http://www.w3.org/TR/ws-addr-wsdl/
http://www.w3.org/TR/ws-addr-core/
http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://www.w3.org/

 © KEYMILE AG

http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf

• WS-Brokered Notification, OASIS Standard

http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf

• WS-Topics, OASIS Standard
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf

• WS-Resource, OASIS Standard
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf

• WS-Resource Properties, OASIS Standard
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf

• WS-Distributed Management: Management Using Web Services MUWS Part 1,
OASIS Standard
http://docs.oasis-open.org/wsdm/wsdm-muws1-1.1-spec-os-01.pdf

• WS-Distributed Management: Management Using Web Services MUWS Part 2,
OASIS Standard
http://docs.oasis-open.org/wsdm/wsdm-muws2-1.1-spec-os-01.pdf

• UDDI (Universal Description, Discovery and Integration), OASIS Standard
http://uddi.org/pubs/uddi-v3.0.2-20041019.pdf

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 79 of 81

http://uddi.org/pubs/uddi-v3.0.2-20041019.pdf
http://docs.oasis-open.org/wsdm/wsdm-muws2-1.1-spec-os-01.pdf
http://docs.oasis-open.org/wsdm/wsdm-muws1-1.1-spec-os-01.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf

 © KEYMILE AG

10.2 Figures

Illustration Index
Illustration 1: MILEGATE management interfaces..8
Illustration 2: Existing system...9
Illustration 3: Existing access methods..9
Illustration 4: Approach with web service...10
Illustration 5: Approach with generation of HTML files..10
Illustration 6: MileGate...12
Illustration 7: MileGate Object Model structure..13
Code 8: KOAP request..16
Code 9: KOAP response..16
Illustration 10: Before & sfter SOA...20
Illustration 11: Three roles in SOA...20
Illustration 12: System structure..26
Table 13: Problems of HTML service and mitigation ..28
Illustration 14: Operation of the HTML Service..29
Illustration 15: GUI prototype...30
Code 16: WSDL definitions..35
Code 17: WSDL documentation..35
Code 18: WSDL types...36
 Code 19: WSDL message...37
 Code 20: WSDL portType..38
 Code 21: WSDL binding..39
 Code 22: WSDL service...39
 Code 23: SOAP GetLabel..40
 Code 24: SOAP SetLabel..41
Illustration 25: SOAPui stubs...61
 Code 26: SOAPui skeleton..67
 Code 27: WSDL endpoint reference..67
 Code 28: merged SOAP request...68
 Code 29: GetLabel request..70
 Code 30: GetLabel response...71
 Code 31: SetLabel request..71
 Code 32: SetLabel response...72
 Code 33: new GetLabel response...72
 Code 34: Response on malformed ResourceURI...73
 Code 35: Response on malformed SOAP body..74

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 80 of 81

 © KEYMILE AG

10.3 Revision history

Revision Short description of the modification Prepared
by

Approved

Doc ID Ver-
sion

Date

TELECOM-WS 1 03/07/09 Insertion of DSCHN's documents DSCHN

TELECOM-WS 1.1 06/07/09 - Taskbook information
- Introduction/ MileGate
- Chapter introduction
- New Web Service Description

DSCHN

TELECOM-WS 1.2 07/07/09 - New chapter structure
- Flow of Information

DSCHN

TELECOM-WS 1.3 08/07/09 - Test/Verification of WS
- move parts to annex

TELECOM-WS
Manage Telecommunication equip-

ment using Web Services
page 81 of 81

	1 Introduction
	1.1 Definitions
	1.2 Project
	1.2.1 Introduction
	1.2.2 Description of project
	1.2.2.1 Actual State
	1.2.2.2 Work to perform
	1.2.2.2.1 Machine-Machine Interface (MMI)
	1.2.2.2.2 Human-Machine Interface (HMI)

	1.2.3 Objectives
	1.2.3.1 Side issue
	1.2.3.2 Main issue

	1.2.4 Distribution of Tasks

	1.3 What is MileGate?
	1.3.1 Flexibility in interfaces

	1.4 General structure of the MileGate
	1.4.1 Structure of the Object Model

	1.5 Constraints for MileGate
	1.5.1 Processor
	1.5.2 Memory

	1.6 Operating mode of MileGate
	1.6.1 Communication with the MileGate
	1.6.1.1 Client-Server system
	1.6.1.2 Format of the requests and responses

	2 Introduction into Web Services
	2.1 Traditional web service
	2.2 SOA (Service-Oriented Architecture)
	2.2.1 Architecture
	2.2.2 Basic characteristics of a SOA

	2.3 Web Service Architecture
	2.3.1 Definition
	2.3.2 Basic Concept
	2.3.3 Standardization

	3 Traditional web service
	3.1 Embedded http server
	3.2 HTML generation service
	3.2.1 Background
	3.2.2 Business functions
	3.2.3 Feasibility study
	3.2.3.1 Identify problems for implementation

	3.2.4 Recommendation for Implementation
	3.2.4.1 Operation of the HTML Service
	3.2.4.2 GUI Prototype
	3.2.4.3 Reaction on changes
	3.2.4.4 Problems

	3.2.5 Conclusion

	4 W3C Web Service Description
	4.1 Introduction
	4.2 Structure of the description
	4.3 SOAP Message

	5 Web Service Concepts
	5.1 Addressing
	5.1.1 WS-Addressing
	5.1.1.1 Endpoint Reference EPR

	5.1.2 WS-Management
	5.1.3 WS-Transfer

	5.2 Resource
	5.2.1 WS-Discovery
	5.2.2 WS-Resource
	5.2.2.1 WS-Resource Properties19
	5.2.2.2 Comment

	5.2.3 WS-Notification
	5.2.3.1 WS-Base Notification
	5.2.3.2 WS-Brokered Notification
	5.2.3.3 WS-Topics
	5.2.3.4 Comment

	5.3 Management
	5.3.1 WS-Distributed Management
	5.3.1.1 Management Using Web Services
	5.3.1.2 Comment

	5.4 Conclusion

	6 Web Service Tools
	6.1 Clients Tools
	6.1.1 Interoperability common problems between web services and SOAP protocol
	6.1.2 Web Services Interoperability Organization (WS►I)
	6.1.3 Presentation of a few frameworks
	6.1.4 Framework evaluation
	6.1.5 Tests tools

	7 Realization of the Prototype
	7.1 Flow of information
	7.1.1 SFD to WSDL
	7.1.2 WSDL to Code & SOAP
	7.1.3 HTTP Server
	7.1.4 SOAP to KOAP
	7.1.5 KOAP to C++

	7.2 SOAP message structure
	7.3 WSDL File generation

	8 Tests
	8.1 Tests Definition
	8.1.1 Verification of the Web Service
	8.1.1.1 Validation
	8.1.1.2 Testing

	8.2 Validation of performed tests
	8.2.1 Validation of files / messages
	8.2.2 Testing the response of the MileGate:
	8.2.2.1 Well-formed request
	8.2.2.2 Malformed request

	9 Conclusion
	10 Annexes
	10.1 References
	10.1.1 Keymile:
	10.1.2 Protocol:
	10.1.3 Embedded Webserver
	10.1.4 Service Oriented Architecture / Web Service Architecture
	10.1.5 Webservice description / concepts

	10.2 Figures
	10.3 Revision history

